論文の概要: VITAL: More Understandable Feature Visualization through Distribution Alignment and Relevant Information Flow
- arxiv url: http://arxiv.org/abs/2503.22399v1
- Date: Fri, 28 Mar 2025 13:08:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-31 15:29:22.926995
- Title: VITAL: More Understandable Feature Visualization through Distribution Alignment and Relevant Information Flow
- Title(参考訳): VITAL: 分布アライメントと関連情報フローによるより分かりやすい特徴可視化
- Authors: Ada Gorgun, Bernt Schiele, Jonas Fischer,
- Abstract要約: 機能可視化(FV)は、ニューロンが応答している情報をデコードするための強力なツールである。
本稿では,FVを原型画像の特徴の統計値と関連するネットワークフローの測定値を組み合わせることで,画像を生成することを提案する。
我々のアプローチは、最先端のFVに対して質的かつ定量的に改善される人間の理解可能な可視化をもたらす。
- 参考スコア(独自算出の注目度): 57.96482272333649
- License:
- Abstract: Neural networks are widely adopted to solve complex and challenging tasks. Especially in high-stakes decision-making, understanding their reasoning process is crucial, yet proves challenging for modern deep networks. Feature visualization (FV) is a powerful tool to decode what information neurons are responding to and hence to better understand the reasoning behind such networks. In particular, in FV we generate human-understandable images that reflect the information detected by neurons of interest. However, current methods often yield unrecognizable visualizations, exhibiting repetitive patterns and visual artifacts that are hard to understand for a human. To address these problems, we propose to guide FV through statistics of real image features combined with measures of relevant network flow to generate prototypical images. Our approach yields human-understandable visualizations that both qualitatively and quantitatively improve over state-of-the-art FVs across various architectures. As such, it can be used to decode which information the network uses, complementing mechanistic circuits that identify where it is encoded. Code is available at: https://github.com/adagorgun/VITAL
- Abstract(参考訳): ニューラルネットワークは複雑で困難なタスクを解決するために広く採用されている。
特に高い意思決定において、彼らの推論プロセスを理解することは重要であるが、現代のディープネットワークでは困難である。
特徴可視化(FV)は、ニューロンが応答している情報を取り除き、そのようなネットワークの背後にある推論をよりよく理解するための強力なツールである。
特に、FVでは、関心のあるニューロンによって検出された情報を反映した人間の理解可能な画像を生成する。
しかし、現在の手法はしばしば認識不能な可視化をもたらし、人間にとって理解しにくい反復的なパターンと視覚的アーティファクトを示す。
これらの問題に対処するため,本研究では,実画像の特徴統計と関連するネットワークフローの測定値を組み合わせてFVを誘導し,プロトタイプ画像を生成することを提案する。
我々のアプローチは、様々なアーキテクチャにわたる最先端のFVを質的かつ定量的に改善する、人間の理解可能な可視化をもたらす。
そのため、ネットワークがどの情報を使用するかをデコードし、どこで符号化されているかを特定するメカニスティック回路を補完することができる。
コードは、https://github.com/adagorgun/VITALで入手できる。
関連論文リスト
- Generating visual explanations from deep networks using implicit neural representations [0.6056822594090163]
本研究では、暗黙的神経表現(INR)が視覚的説明を生成するための良い枠組みであることを示す。
同じ画像に対して複数の重複しない属性マスクを生成するために、反復INRベースの手法を提案する。
論文 参考訳(メタデータ) (2025-01-20T23:17:57Z) - Saliency Suppressed, Semantics Surfaced: Visual Transformations in Neural Networks and the Brain [0.0]
私たちは神経科学からインスピレーションを得て、ニューラルネットワークが情報を低(視覚的満足度)で高(セマンティックな類似性)の抽象レベルでエンコードする方法について光を当てています。
ResNetsは、オブジェクト分類の目的によって訓練された場合、ViTsよりも唾液度情報に敏感であることが分かりました。
我々は、セマンティックエンコーディングがAIと人間の視覚知覚を協調させる重要な要素であることを示し、サリエンシ抑制は非脳的な戦略であることを示した。
論文 参考訳(メタデータ) (2024-04-29T15:05:42Z) - Unleashing the Power of Depth and Pose Estimation Neural Networks by
Designing Compatible Endoscopic Images [12.412060445862842]
内視鏡画像の特性を詳細に解析し、画像とニューラルネットワークの互換性を改善する。
まず,完全な画像情報の代わりに部分的な画像情報を入力するMask Image Modelling (MIM) モジュールを導入する。
第2に、画像とニューラルネットワークの互換性を明確に向上させるために、内視鏡画像を強化する軽量ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-09-14T02:19:38Z) - Don't trust your eyes: on the (un)reliability of feature visualizations [25.018840023636546]
自然入力上での通常のネットワーク動作から完全に切り離された任意のパターンを示すために、特徴視覚化をトリックする方法を示す。
次に、標準の無人ネットワークで同様の現象が起こる証拠を提供する。
これは機能ビジュアライゼーションの正当性チェックとして使用できる。
論文 参考訳(メタデータ) (2023-06-07T18:31:39Z) - Synergistic information supports modality integration and flexible
learning in neural networks solving multiple tasks [107.8565143456161]
本稿では,様々な認知タスクを行う単純な人工ニューラルネットワークが採用する情報処理戦略について検討する。
結果は、ニューラルネットワークが複数の多様なタスクを学習するにつれて、シナジーが増加することを示している。
トレーニング中に無作為にニューロンを停止させると、ネットワークの冗長性が増加し、ロバスト性の増加に対応する。
論文 参考訳(メタデータ) (2022-10-06T15:36:27Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
本稿では,ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とする。
我々は、高解像度の空間的詳細を同時に保存しながら、複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
提案手法は,デフォーカス・デブロアリング,画像デノイング,超解像,画像強調など,さまざまな画像処理タスクに対して,最先端の処理結果を実現する。
論文 参考訳(メタデータ) (2022-04-19T17:59:45Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
ニューラルネットが問題の未特定化を扱う方法が,データ表現に大きく依存していることを示す。
深層学習におけるアーキテクチャ的インダクティブバイアスの理解は,これらのシステムの公平性,堅牢性,一般化に対処する上で基本的であることを強調した。
論文 参考訳(メタデータ) (2021-04-29T14:31:09Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
PPI(Proactive Pseudo-Intervention)と呼ばれる新しい対照的な学習戦略を提案する。
PPIは、因果関係のない画像の特徴を保護するために積極的に介入する。
また,重要な画像画素を識別するための,因果的に通知された新たなサリエンスマッピングモジュールを考案し,モデル解釈の容易性を示す。
論文 参考訳(メタデータ) (2020-12-06T20:30:26Z) - Ventral-Dorsal Neural Networks: Object Detection via Selective Attention [51.79577908317031]
我々はVDNet(Ventral-Dorsal Networks)と呼ばれる新しいフレームワークを提案する。
人間の視覚システムの構造にインスパイアされた我々は「Ventral Network」と「Dorsal Network」の統合を提案する。
実験の結果,提案手法は最先端の物体検出手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-05-15T23:57:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。