論文の概要: A Semi-Personalized System for User Cold Start Recommendation on Music
Streaming Apps
- arxiv url: http://arxiv.org/abs/2106.03819v1
- Date: Mon, 7 Jun 2021 17:35:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-08 17:27:50.610972
- Title: A Semi-Personalized System for User Cold Start Recommendation on Music
Streaming Apps
- Title(参考訳): 音楽ストリーミングアプリにおける半パーソナライズされたユーザコールドスタート勧告システム
- Authors: L\'ea Briand and Guillaume Salha-Galvan and Walid Bendada and Mathieu
Morlon and Viet-Anh Tran
- Abstract要約: 本稿では,音楽ストリーミングサービスDeezerに最近導入したシステムについて述べる。
このソリューションは、ディープニューラルネットワークアーキテクチャに基づいた半個人化されたレコメンデーション戦略を活用する。
本稿では,Deezerにおけるコールドスタートユーザの今後の音楽嗜好を予測する上で,このシステムの実用的影響と有効性について概説する。
- 参考スコア(独自算出の注目度): 1.6050172226234583
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Music streaming services heavily rely on recommender systems to improve their
users' experience, by helping them navigate through a large musical catalog and
discover new songs, albums or artists. However, recommending relevant and
personalized content to new users, with few to no interactions with the
catalog, is challenging. This is commonly referred to as the user cold start
problem. In this applied paper, we present the system recently deployed on the
music streaming service Deezer to address this problem. The solution leverages
a semi-personalized recommendation strategy, based on a deep neural network
architecture and on a clustering of users from heterogeneous sources of
information. We extensively show the practical impact of this system and its
effectiveness at predicting the future musical preferences of cold start users
on Deezer, through both offline and online large-scale experiments. Besides, we
publicly release our code as well as anonymized usage data from our
experiments. We hope that this release of industrial resources will benefit
future research on user cold start recommendation.
- Abstract(参考訳): 音楽ストリーミングサービスは、大きな音楽カタログをナビゲートし、新しい曲、アルバム、アーティストを見つけるのを助けることで、ユーザー体験を改善するためにレコメンダシステムに大きく依存している。
しかし、関連性がありパーソナライズされたコンテンツを新しいユーザーに推薦することは、カタログとのやりとりがほとんど、あるいは全くない。
これをユーザコールドスタート問題と呼ぶのが一般的である。
本稿では,音楽ストリーミングサービスdeezerに最近導入したシステムについて紹介する。
このソリューションは、ディープニューラルネットワークアーキテクチャと、異種情報ソースからのユーザのクラスタリングに基づく、半個人化されたレコメンデーション戦略を活用する。
本システムは,オフラインおよびオンラインの大規模実験を通じて,Deezer上でのコールドスタートユーザの将来の音楽嗜好を予測するための実用的効果と,その効果を広く示す。
さらに、実験から得られた匿名利用データだけでなく、コードも公開しています。
今後,この産業資源の公開が,寒冷開始推奨の今後の研究に役立つことを期待している。
関連論文リスト
- Enhancing Sequential Music Recommendation with Personalized Popularity Awareness [56.972624411205224]
本稿では、パーソナライズされた人気情報をシーケンシャルなレコメンデーションに組み込む新しいアプローチを提案する。
実験結果から、パーソナライズされた最もポピュラーなレコメンデータは、既存の最先端モデルよりも優れていることが示された。
論文 参考訳(メタデータ) (2024-09-06T15:05:12Z) - Fairness Through Domain Awareness: Mitigating Popularity Bias For Music
Discovery [56.77435520571752]
音楽発見と人気バイアスの本質的な関係について検討する。
本稿では,グラフニューラルネットワーク(GNN)に基づくレコメンデータシステムにおいて,人気バイアスに対処する,ドメイン対応の個別フェアネスに基づくアプローチを提案する。
我々のアプローチでは、個々の公正さを用いて、真実を聴く経験、すなわち2つの歌が似ているとすると、この類似性は彼らの表現に反映されるべきである。
論文 参考訳(メタデータ) (2023-08-28T14:12:25Z) - Latent User Intent Modeling for Sequential Recommenders [92.66888409973495]
逐次リコメンデータモデルは、プラットフォーム上での氏のインタラクション履歴に基づいて、ユーザが次に対話する可能性のあるアイテムを予測することを学習する。
しかし、ほとんどのシーケンシャルなレコメンデータは、ユーザの意図に対する高いレベルの理解を欠いている。
したがって、インテントモデリングはユーザー理解と長期ユーザーエクスペリエンスの最適化に不可欠である。
論文 参考訳(メタデータ) (2022-11-17T19:00:24Z) - FedGRec: Federated Graph Recommender System with Lazy Update of Latent
Embeddings [108.77460689459247]
プライバシー問題を軽減するためのフェデレートグラフレコメンダシステム(FedGRec)を提案する。
本システムでは,ユーザとサーバは,ユーザとアイテムに対する遅延埋め込みを明示的に記憶する。
我々は,遅延埋め込みを相互作用グラフの欠落のプロキシとして用いることの有効性を検証するために,広範な実験的な評価を行った。
論文 参考訳(メタデータ) (2022-10-25T01:08:20Z) - Personalizing Intervened Network for Long-tailed Sequential User
Behavior Modeling [66.02953670238647]
タイルユーザーは、共同トレーニング後のヘッドユーザーよりも大幅に品質の低いレコメンデーションに悩まされる。
テールユーザーで個別に訓練されたモデルは、限られたデータのために依然として劣った結果が得られる。
本稿では,テールユーザの推薦性能を大幅に向上させる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-08-19T02:50:19Z) - Psychologically-Inspired Music Recommendation System [3.032299122358857]
感情認識型MSSを構築するために,聴取者の性格と現在の感情状態と音声特徴を関連づけることを模索する。
この結果とSpotify APIデータに基づく従来のMSSの出力とを定量的に定性的に比較し,音楽レコメンデーションの質に大きな影響を与えるかどうかを検証した。
論文 参考訳(メタデータ) (2022-05-06T19:38:26Z) - Learning to Learn a Cold-start Sequential Recommender [70.5692886883067]
コールドスタート勧告は、現代のオンラインアプリケーションにおいて緊急の問題である。
メタ学習に基づくコールドスタートシーケンシャルレコメンデーションフレームワークMetaCSRを提案する。
MetaCSRは、通常のユーザの行動から共通のパターンを学ぶ能力を持っている。
論文 参考訳(メタデータ) (2021-10-18T08:11:24Z) - ColdGAN: Resolving Cold Start User Recommendation by using Generative
Adversarial Networks [0.1529342790344802]
我々は、この問題を解決するためにサイド情報を使用しない、エンドツーエンドのGANベースモデルであるColdGANを提案する。
提案手法は,最先端のレコメンデータに比べて性能が大幅に向上する。
論文 参考訳(メタデータ) (2020-11-25T08:10:35Z) - Time-Aware Music Recommender Systems: Modeling the Evolution of Implicit
User Preferences and User Listening Habits in A Collaborative Filtering
Approach [4.576379639081977]
本稿では,曲の演奏時期に関する時間的情報について考察する。
その目的は、ユーザの好みの進化を、暗黙の格付けとユーザの聴取行動の進化という形でモデル化することである。
本研究で提案する協調フィルタリング手法では,ユーザを特徴付け,より信頼性の高いレコメンデーションを提供するために,日々の聴取習慣を捉えている。
論文 参考訳(メタデータ) (2020-08-26T08:00:11Z) - Recommending Podcasts for Cold-Start Users Based on Music Listening and
Taste [5.429958676933934]
ポッドキャスティングは急速に普及する新興メディアだと考えている。
音楽消費行動を用いて、Spotifyユーザーの好みを200万以上のポッドキャストで推定する2つの主要な手法について検討した。
その結果,オフラインおよびオンライン両方の実験において,最大50%の消費改善が見られた。
論文 参考訳(メタデータ) (2020-07-27T02:55:23Z) - A session-based song recommendation approach involving user
characterization along the play power-law distribution [0.0]
この作業は、グレーシープユーザを管理し、暗黙のレーティングを取得するという、あまり注目されていない2つの重要な問題に焦点を当てている。
1つ目は通常、入手が難しいコンテンツ情報に頼って対処される。
もう一つの欠点は、明示的な評価を集めるのに障害があるときに生じる空間の問題に関係している。
論文 参考訳(メタデータ) (2020-04-25T07:17:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。