論文の概要: Enhancing Sequential Music Recommendation with Personalized Popularity Awareness
- arxiv url: http://arxiv.org/abs/2409.04329v1
- Date: Fri, 06 Sep 2024 15:05:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 16:25:11.148580
- Title: Enhancing Sequential Music Recommendation with Personalized Popularity Awareness
- Title(参考訳): パーソナライズされた大衆意識による逐次音楽推薦の強化
- Authors: Davide Abbattista, Vito Walter Anelli, Tommaso Di Noia, Craig Macdonald, Aleksandr Vladimirovich Petrov,
- Abstract要約: 本稿では、パーソナライズされた人気情報をシーケンシャルなレコメンデーションに組み込む新しいアプローチを提案する。
実験結果から、パーソナライズされた最もポピュラーなレコメンデータは、既存の最先端モデルよりも優れていることが示された。
- 参考スコア(独自算出の注目度): 56.972624411205224
- License:
- Abstract: In the realm of music recommendation, sequential recommender systems have shown promise in capturing the dynamic nature of music consumption. Nevertheless, traditional Transformer-based models, such as SASRec and BERT4Rec, while effective, encounter challenges due to the unique characteristics of music listening habits. In fact, existing models struggle to create a coherent listening experience due to rapidly evolving preferences. Moreover, music consumption is characterized by a prevalence of repeated listening, i.e., users frequently return to their favourite tracks, an important signal that could be framed as individual or personalized popularity. This paper addresses these challenges by introducing a novel approach that incorporates personalized popularity information into sequential recommendation. By combining user-item popularity scores with model-generated scores, our method effectively balances the exploration of new music with the satisfaction of user preferences. Experimental results demonstrate that a Personalized Most Popular recommender, a method solely based on user-specific popularity, outperforms existing state-of-the-art models. Furthermore, augmenting Transformer-based models with personalized popularity awareness yields superior performance, showing improvements ranging from 25.2% to 69.8%. The code for this paper is available at https://github.com/sisinflab/personalized-popularity-awareness.
- Abstract(参考訳): 音楽レコメンデーションの領域では、シーケンシャルなレコメンデーションシステムは、音楽消費の動的な性質を捉えることを約束している。
しかしながら、SASRecやBERT4Recのような従来のトランスフォーマーベースのモデルは、効果はあるものの、音楽聴取の独特の特徴のために困難に直面している。
実際、既存のモデルは、急速に進化する好みのために、一貫性のあるリスニングエクスペリエンスを作り出すのに苦労しています。
さらに、音楽消費は、繰り返し聴くことの頻度、すなわち、ユーザがお気に入りのトラックに戻ること、すなわち、個人またはパーソナライズされた人気とみなせる重要なシグナルが特徴である。
本稿では、パーソナライズされた人気情報をシーケンシャルなレコメンデーションに組み込んだ新しいアプローチを導入することで、これらの課題に対処する。
ユーザの人気スコアとモデル生成スコアを組み合わせることで,新曲の探索とユーザの嗜好の満足度を効果的にバランスさせる。
実験結果から,ユーザ固有の人気のみに基づくパーソナライズされた最もポピュラーなレコメンデータが,既存の最先端モデルより優れていることが示された。
さらに、パーソナライズされた人気を意識したトランスフォーマーベースのモデルの増加は、25.2%から69.8%の改善を示す優れたパフォーマンスをもたらす。
本論文のコードはhttps://github.com/sisinflab/personalized-popularity-awarenessで公開されている。
関連論文リスト
- Towards Leveraging Contrastively Pretrained Neural Audio Embeddings for Recommender Tasks [18.95453617434051]
音楽レコメンデータシステムは、しばしばネットワークベースのモデルを使用して、楽曲、アーティスト、ユーザー間の関係をキャプチャする。
新しい音楽作品やアーティストは、初期情報が不十分なため、コールドスタートの問題に直面することが多い。
これを解決するために、音楽から直接コンテンツベースの情報を抽出し、協調フィルタリングに基づく手法を強化する。
論文 参考訳(メタデータ) (2024-09-13T17:53:06Z) - MuseBarControl: Enhancing Fine-Grained Control in Symbolic Music Generation through Pre-Training and Counterfactual Loss [51.85076222868963]
制御信号と対応する音楽トークンを直接リンクする事前学習タスクを導入する。
次に、生成した音楽と制御プロンプトとの整合性を向上する新たな対実的損失を実現する。
論文 参考訳(メタデータ) (2024-07-05T08:08:22Z) - Advancing Cultural Inclusivity: Optimizing Embedding Spaces for Balanced Music Recommendations [4.276697874428501]
音楽レコメンデーションシステムにおける人気バイアスは、人口統計や文化の軸に沿って伝播することができる。
我々は,これらのバイアスを,プロトタイプベースの行列分解法において,表現不足の文化的グループからアーティストへの推薦において識別する。
本研究は,音楽レコメンデーションにおける人気バイアスの低減と,人口・文化の公平性向上に寄与することを示す。
論文 参考訳(メタデータ) (2024-05-27T19:12:53Z) - MusicRL: Aligning Music Generation to Human Preferences [62.44903326718772]
MusicRLは人間のフィードバックによって微調整された最初の音楽生成システムである。
ユーザに対してMusicLMをデプロイし,30,000対の選好からなる実質的なデータセットを収集する。
人間のフィードバックを大規模に組み込んだ最初のテキスト-音楽モデルであるMusicRL-Uを訓練する。
論文 参考訳(メタデータ) (2024-02-06T18:36:52Z) - Fairness Through Domain Awareness: Mitigating Popularity Bias For Music
Discovery [56.77435520571752]
音楽発見と人気バイアスの本質的な関係について検討する。
本稿では,グラフニューラルネットワーク(GNN)に基づくレコメンデータシステムにおいて,人気バイアスに対処する,ドメイン対応の個別フェアネスに基づくアプローチを提案する。
我々のアプローチでは、個々の公正さを用いて、真実を聴く経験、すなわち2つの歌が似ているとすると、この類似性は彼らの表現に反映されるべきである。
論文 参考訳(メタデータ) (2023-08-28T14:12:25Z) - Capturing Popularity Trends: A Simplistic Non-Personalized Approach for
Enhanced Item Recommendation [10.606845291519932]
Popularity-Aware Recommender (PARE) は、最も人気の高いアイテムを予測することで、非個人化されたレコメンデーションを行う。
私たちの知る限り、レコメンデーションシステムでアイテムの人気を明示的にモデル化する最初の試みである。
論文 参考訳(メタデータ) (2023-08-17T06:20:03Z) - Latent User Intent Modeling for Sequential Recommenders [92.66888409973495]
逐次リコメンデータモデルは、プラットフォーム上での氏のインタラクション履歴に基づいて、ユーザが次に対話する可能性のあるアイテムを予測することを学習する。
しかし、ほとんどのシーケンシャルなレコメンデータは、ユーザの意図に対する高いレベルの理解を欠いている。
したがって、インテントモデリングはユーザー理解と長期ユーザーエクスペリエンスの最適化に不可欠である。
論文 参考訳(メタデータ) (2022-11-17T19:00:24Z) - Personalizing Intervened Network for Long-tailed Sequential User
Behavior Modeling [66.02953670238647]
タイルユーザーは、共同トレーニング後のヘッドユーザーよりも大幅に品質の低いレコメンデーションに悩まされる。
テールユーザーで個別に訓練されたモデルは、限られたデータのために依然として劣った結果が得られる。
本稿では,テールユーザの推薦性能を大幅に向上させる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-08-19T02:50:19Z) - Recommending Podcasts for Cold-Start Users Based on Music Listening and
Taste [5.429958676933934]
ポッドキャスティングは急速に普及する新興メディアだと考えている。
音楽消費行動を用いて、Spotifyユーザーの好みを200万以上のポッドキャストで推定する2つの主要な手法について検討した。
その結果,オフラインおよびオンライン両方の実験において,最大50%の消費改善が見られた。
論文 参考訳(メタデータ) (2020-07-27T02:55:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。