論文の概要: Widening Access to Applied Machine Learning with TinyML
- arxiv url: http://arxiv.org/abs/2106.04008v2
- Date: Wed, 9 Jun 2021 16:58:52 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-10 10:48:38.699817
- Title: Widening Access to Applied Machine Learning with TinyML
- Title(参考訳): TinyMLによる応用機械学習へのアクセス拡大
- Authors: Vijay Janapa Reddi, Brian Plancher, Susan Kennedy, Laurence Moroney,
Pete Warden, Anant Agarwal, Colby Banbury, Massimo Banzi, Matthew Bennett,
Benjamin Brown, Sharad Chitlangia, Radhika Ghosal, Sarah Grafman, Rupert
Jaeger, Srivatsan Krishnan, Maximilian Lam, Daniel Leiker, Cara Mann, Mark
Mazumder, Dominic Pajak, Dhilan Ramaprasad, J. Evan Smith, Matthew Stewart,
Dustin Tingley
- Abstract要約: 我々は,Tiny Machine Learning (TinyML)上で,大規模なオープンオンラインコース (MOOC) を通じて応用機械学習 (ML) へのアクセスを増やすための教育的アプローチについて述べる。
この目的のために、学界(ハーバード大学)と産業(Google)の協力により、TinyMLを使ってソリューションを開発するためのアプリケーション指向の指導を提供する4つのMOOCが作成された。
このシリーズは、edX MOOCプラットフォームで公開されており、基本的なプログラミング以上の前提条件がなく、世界中のさまざまなバックグラウンドから学習者向けに設計されている。
- 参考スコア(独自算出の注目度): 1.1678513163359947
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Broadening access to both computational and educational resources is critical
to diffusing machine-learning (ML) innovation. However, today, most ML
resources and experts are siloed in a few countries and organizations. In this
paper, we describe our pedagogical approach to increasing access to applied ML
through a massive open online course (MOOC) on Tiny Machine Learning (TinyML).
We suggest that TinyML, ML on resource-constrained embedded devices, is an
attractive means to widen access because TinyML both leverages low-cost and
globally accessible hardware, and encourages the development of complete,
self-contained applications, from data collection to deployment. To this end, a
collaboration between academia (Harvard University) and industry (Google)
produced a four-part MOOC that provides application-oriented instruction on how
to develop solutions using TinyML. The series is openly available on the edX
MOOC platform, has no prerequisites beyond basic programming, and is designed
for learners from a global variety of backgrounds. It introduces pupils to
real-world applications, ML algorithms, data-set engineering, and the ethical
considerations of these technologies via hands-on programming and deployment of
TinyML applications in both the cloud and their own microcontrollers. To
facilitate continued learning, community building, and collaboration beyond the
courses, we launched a standalone website, a forum, a chat, and an optional
course-project competition. We also released the course materials publicly,
hoping they will inspire the next generation of ML practitioners and educators
and further broaden access to cutting-edge ML technologies.
- Abstract(参考訳): 計算資源と教育資源の両方へのアクセスの拡大は、機械学習(ml)イノベーションの拡散に不可欠である。
しかし今日では、ほとんどのMLリソースと専門家がいくつかの国や組織でサイロ化されている。
本稿では,Tiny Machine Learning (TinyML) 上の大規模なオープンオンラインコース (MOOC) を通じて,応用MLへのアクセスを増やすための教育的アプローチについて述べる。
リソース制約のある組み込みデバイス上でのMLであるTinyMLは、低コストかつグローバルにアクセス可能なハードウェアを活用し、データ収集からデプロイメントに至るまで、完全な自己完結型アプリケーションの開発を促進するため、アクセスを拡大するための魅力的な手段である、と提案する。
この目的のために、学界(ハーバード大学)と産業(Google)の協力により、TinyMLを使ってソリューションを開発するためのアプリケーション指向の指導を提供する4つのMOOCを開発した。
このシリーズは、edX MOOCプラットフォームで公開されており、基本的なプログラミング以上の前提条件がなく、世界中のさまざまなバックグラウンドから学習者向けに設計されている。
現実世界のアプリケーション、MLアルゴリズム、データセットエンジニアリング、そしてクラウドと独自のマイクロコントローラの両方にTinyMLアプリケーションのハンズオンプログラミングとデプロイを通じて、これらの技術の倫理的考察を紹介する。
コースを越えた学習、コミュニティ構築、コラボレーションを促進するために、スタンドアロンのwebサイト、フォーラム、チャット、オプションのコースプロジェクトコンペティションを立ち上げました。
また、次世代のML実践者と教育者を刺激し、最先端のML技術へのアクセスをさらに拡大したいと考えています。
関連論文リスト
- Tiny Machine Learning: Progress and Futures [24.76599651516217]
Tiny Machine Learning (TinyML)は、機械学習の新しいフロンティアである。
TinyMLはハードウェアの制約のために難しい。
まず、TinyMLの定義、課題、応用について論じる。
論文 参考訳(メタデータ) (2024-03-28T00:34:56Z) - Octavius: Mitigating Task Interference in MLLMs via LoRA-MoE [83.00018517368973]
LLM(Large Language Models)は、命令チューニングを通じて、ゼロショット能力をマルチモーダル学習に拡張することができる。
ネガティブな対立や干渉は パフォーマンスに悪影響を及ぼすかもしれない
我々は、よく知られたMixture-of-Experts(MoE)と代表的なPEFT技法の1つであるLoRA(LoRA-MoE)を組み合わせて、マルチモーダル学習のための新しいLLMベースのデコーダ(LoRA-MoE)を設計する。
論文 参考訳(メタデータ) (2023-11-05T15:48:29Z) - Federated Fine-Tuning of LLMs on the Very Edge: The Good, the Bad, the Ugly [62.473245910234304]
本稿では,最新のエッジコンピューティングシステムにおいて,Large Language Modelsをどのように導入できるかを,ハードウェア中心のアプローチで検討する。
マイクロレベルのハードウェアベンチマークを行い、FLOPモデルと最先端のデータセンターGPUを比較し、現実的な条件下でのネットワーク利用について検討する。
論文 参考訳(メタデータ) (2023-10-04T20:27:20Z) - A Machine Learning-oriented Survey on Tiny Machine Learning [9.690117347832722]
Tiny Machine Learning(TinyML)の出現は、人工知能の分野に積極的に革命をもたらした。
TinyMLは、社会、経済、個人が効果的なAI融合コンピューティング技術を採用するのを助けるために、第4および第5次産業革命において不可欠な役割を担っている。
論文 参考訳(メタデータ) (2023-09-21T09:47:12Z) - CodeTF: One-stop Transformer Library for State-of-the-art Code LLM [72.1638273937025]
我々は、最先端のCode LLMとコードインテリジェンスのためのオープンソースのTransformerベースのライブラリであるCodeTFを紹介する。
我々のライブラリは、事前訓練されたコードLLMモデルと人気のあるコードベンチマークのコレクションをサポートします。
CodeTFが機械学習/生成AIとソフトウェア工学のギャップを埋められることを願っている。
論文 参考訳(メタデータ) (2023-05-31T05:24:48Z) - TinyML: Tools, Applications, Challenges, and Future Research Directions [2.9398911304923456]
TinyMLは、安価でリソースに制約のあるデバイス上でのMLアプリケーションを可能にする、組み込み機械学習技術である。
この記事では、TinyML実装で利用可能なさまざまな方法についてレビューする。
論文 参考訳(メタデータ) (2023-03-23T15:29:48Z) - OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System [85.8338446357469]
我々は人間中心のAutoMLシステムであるOmniForceを紹介した。
我々は、OmniForceがAutoMLシステムを実践し、オープン環境シナリオにおける適応型AIを構築する方法について説明する。
論文 参考訳(メタデータ) (2023-03-01T13:35:22Z) - A review of TinyML [0.0]
TinyMLの組み込み機械学習の概念は、このような多様性を、通常のハイエンドアプローチからローエンドアプリケーションへと押し上げようとしている。
TinyMLは、機械学習、ソフトウェア、ハードウェアの統合において、急速に拡大する学際的なトピックである。
本稿では,TinyMLがいくつかの産業分野,その障害,その将来的な範囲にどのようなメリットをもたらすのかを考察する。
論文 参考訳(メタデータ) (2022-11-05T06:02:08Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
本稿では,FL,メタラーニング,フェデレーションメタラーニング(FedMeta)について概観する。
他のチュートリアルと異なり、私たちの目標はFL、メタラーニング、FedMetaの方法論をどのように設計、最適化、進化させ、無線ネットワーク上で応用するかを探ることです。
論文 参考訳(メタデータ) (2022-10-24T10:59:29Z) - Tiny Robot Learning: Challenges and Directions for Machine Learning in
Resource-Constrained Robots [57.27442333662654]
機械学習(ML)は、コンピュータシステムにまたがる普及したツールとなっている。
ティニー・ロボット・ラーニング(Tiny Robot Learning)とは、リソースに制約された低コストの自律ロボットにMLを配置する手法である。
小型ロボット学習は、サイズ、重量、面積、パワー(SWAP)の制約によって困難にさらされる。
本稿では,小型ロボットの学習空間を簡潔に調査し,重要な課題を詳述し,MLシステム設計における将来的な仕事の機会を提案する。
論文 参考訳(メタデータ) (2022-05-11T19:36:15Z) - Declarative Machine Learning Systems [7.5717114708721045]
機械学習(ML)は、学術的な取り組みから、コンピューティングのほぼすべての側面で採用されている普及した技術へと移行してきた。
近年の自然科学におけるMLの適用の成功により、MLは人類が直面する最も困難な現実世界問題に対処するために利用できることが明らかとなった。
MLシステムの次の波は、おそらくコーディングスキルなしで、より多くの人が同じタスクを実行できると信じています。
論文 参考訳(メタデータ) (2021-07-16T23:57:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。