論文の概要: A Machine Learning-oriented Survey on Tiny Machine Learning
- arxiv url: http://arxiv.org/abs/2309.11932v2
- Date: Tue, 26 Sep 2023 14:03:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-27 17:04:14.117131
- Title: A Machine Learning-oriented Survey on Tiny Machine Learning
- Title(参考訳): Tiny Machine Learningに関する機械学習指向調査
- Authors: Luigi Capogrosso, Federico Cunico, Dong Seon Cheng, Franco Fummi,
Marco Cristani
- Abstract要約: Tiny Machine Learning(TinyML)の出現は、人工知能の分野に積極的に革命をもたらした。
TinyMLは、社会、経済、個人が効果的なAI融合コンピューティング技術を採用するのを助けるために、第4および第5次産業革命において不可欠な役割を担っている。
- 参考スコア(独自算出の注目度): 9.690117347832722
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The emergence of Tiny Machine Learning (TinyML) has positively revolutionized
the field of Artificial Intelligence by promoting the joint design of
resource-constrained IoT hardware devices and their learning-based software
architectures. TinyML carries an essential role within the fourth and fifth
industrial revolutions in helping societies, economies, and individuals employ
effective AI-infused computing technologies (e.g., smart cities, automotive,
and medical robotics). Given its multidisciplinary nature, the field of TinyML
has been approached from many different angles: this comprehensive survey
wishes to provide an up-to-date overview focused on all the learning algorithms
within TinyML-based solutions. The survey is based on the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) methodological flow,
allowing for a systematic and complete literature survey. In particular,
firstly we will examine the three different workflows for implementing a
TinyML-based system, i.e., ML-oriented, HW-oriented, and co-design. Secondly,
we propose a taxonomy that covers the learning panorama under the TinyML lens,
examining in detail the different families of model optimization and design, as
well as the state-of-the-art learning techniques. Thirdly, this survey will
present the distinct features of hardware devices and software tools that
represent the current state-of-the-art for TinyML intelligent edge
applications. Finally, we discuss the challenges and future directions.
- Abstract(参考訳): TinyML(Tiny Machine Learning)の出現は、リソース制約のIoTハードウェアデバイスと学習ベースのソフトウェアアーキテクチャの共同設計を促進することによって、人工知能の分野に積極的に革命をもたらした。
TinyMLは、社会、経済、個人が効果的なAI融合コンピューティング技術(スマートシティ、自動車、医療ロボティクスなど)を採用するのを助けるために、第4および第5次産業革命において重要な役割を担っている。
この総合的な調査は、TinyMLベースのソリューション内のすべての学習アルゴリズムに焦点をあてた最新の概要を提供したいと考えている。
The Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)の方法論的流れに基づいており、体系的で完全な文献調査を可能にしている。
特に、まず、TinyMLベースのシステムを実装するための3つの異なるワークフロー、すなわちML指向、HW指向、共同設計について検討する。
第2に,TinyMLレンズの学習パノラマを網羅する分類法を提案し,モデル最適化と設計の異なるファミリと最先端の学習技術について詳細に検討する。
第3に、この調査では、TinyMLインテリジェントエッジアプリケーションの現状を表す、ハードウェアデバイスとソフトウェアツールの異なる特徴を提示する。
最後に,課題と今後の方向性について論じる。
関連論文リスト
- Tool Learning with Large Language Models: A Survey [60.733557487886635]
大規模言語モデル(LLM)を用いたツール学習は,高度に複雑な問題に対処するLLMの能力を強化するための,有望なパラダイムとして登場した。
この分野での注目と急速な進歩にもかかわらず、現存する文献は断片化され、体系的な組織が欠如している。
論文 参考訳(メタデータ) (2024-05-28T08:01:26Z) - TinyML: Tools, Applications, Challenges, and Future Research Directions [2.9398911304923456]
TinyMLは、安価でリソースに制約のあるデバイス上でのMLアプリケーションを可能にする、組み込み機械学習技術である。
この記事では、TinyML実装で利用可能なさまざまな方法についてレビューする。
論文 参考訳(メタデータ) (2023-03-23T15:29:48Z) - A review of TinyML [0.0]
TinyMLの組み込み機械学習の概念は、このような多様性を、通常のハイエンドアプローチからローエンドアプリケーションへと押し上げようとしている。
TinyMLは、機械学習、ソフトウェア、ハードウェアの統合において、急速に拡大する学際的なトピックである。
本稿では,TinyMLがいくつかの産業分野,その障害,その将来的な範囲にどのようなメリットをもたらすのかを考察する。
論文 参考訳(メタデータ) (2022-11-05T06:02:08Z) - Tiny Robot Learning: Challenges and Directions for Machine Learning in
Resource-Constrained Robots [57.27442333662654]
機械学習(ML)は、コンピュータシステムにまたがる普及したツールとなっている。
ティニー・ロボット・ラーニング(Tiny Robot Learning)とは、リソースに制約された低コストの自律ロボットにMLを配置する手法である。
小型ロボット学習は、サイズ、重量、面積、パワー(SWAP)の制約によって困難にさらされる。
本稿では,小型ロボットの学習空間を簡潔に調査し,重要な課題を詳述し,MLシステム設計における将来的な仕事の機会を提案する。
論文 参考訳(メタデータ) (2022-05-11T19:36:15Z) - Retrieval-Enhanced Machine Learning [110.5237983180089]
本稿では,いくつかの既存モデルを含む汎用的な検索強化機械学習フレームワークについて述べる。
REMLは情報検索の慣例に挑戦し、最適化を含む中核領域における新たな進歩の機会を提示している。
REMLリサーチアジェンダは、情報アクセス研究の新しいスタイルの基礎を築き、機械学習と人工知能の進歩への道を開く。
論文 参考訳(メタデータ) (2022-05-02T21:42:45Z) - Software Engineering Approaches for TinyML based IoT Embedded Vision: A
Systematic Literature Review [0.0]
IoT(Internet of Things)は、マシンラーニング(ML)と協力して、遠端に深いインテリジェンスを埋め込んでいる。
TinyML(Tiny Machine Learning)は、極めてリーンなエッジハードウェア上に、組み込みビジョンのためのMLモデルのデプロイを可能にする。
TinyMLをベースとする組み込みビジョンアプリケーションは、まだ初期段階にある。
論文 参考訳(メタデータ) (2022-04-19T07:07:41Z) - How to Manage Tiny Machine Learning at Scale: An Industrial Perspective [5.384059021764428]
TinyML(TinyML)は、ユビキタスマイクロコントローラ上で機械学習(ML)が民主化され、広く普及している。
TinyMLモデルは異なる構造で開発されており、その動作原理を明確に理解せずに配布されることが多い。
本稿では,TinyMLモデルとIoTデバイスを大規模に管理するためのセマンティックWeb技術を用いたフレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-18T10:36:11Z) - Widening Access to Applied Machine Learning with TinyML [1.1678513163359947]
我々は,Tiny Machine Learning (TinyML)上で,大規模なオープンオンラインコース (MOOC) を通じて応用機械学習 (ML) へのアクセスを増やすための教育的アプローチについて述べる。
この目的のために、学界(ハーバード大学)と産業(Google)の協力により、TinyMLを使ってソリューションを開発するためのアプリケーション指向の指導を提供する4つのMOOCが作成された。
このシリーズは、edX MOOCプラットフォームで公開されており、基本的なプログラミング以上の前提条件がなく、世界中のさまざまなバックグラウンドから学習者向けに設計されている。
論文 参考訳(メタデータ) (2021-06-07T23:31:47Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
機械学習システムの開発とデプロイは、現代のツールで簡単に実行できますが、プロセスは一般的に急ぎ、エンドツーエンドです。
私たちは、機械学習の開発と展開のための実証済みのシステムエンジニアリングアプローチを開発しました。
当社の「機械学習技術準備レベル」フレームワークは、堅牢で信頼性が高く、責任あるシステムを確保するための原則的なプロセスを定義します。
論文 参考訳(メタデータ) (2021-01-11T15:54:48Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
機械学習はデータに対する深い洞察を与え、マシンが高品質な予測を行うことを可能にする。
ほとんどの高度な機械学習アプローチは、大規模なデータを扱う場合の膨大な時間コストに悩まされる。
大規模機械学習は、ビッグデータからパターンを、同等のパフォーマンスで効率的に学習することを目的としている。
論文 参考訳(メタデータ) (2020-08-10T06:07:52Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
機械学習システムの開発は、現代的なツールで容易に実行できるが、プロセスは通常急いで、エンドツーエンドで実行される。
エンジニアリングシステムは、高品質で信頼性の高い結果の開発を効率化するために、明確に定義されたプロセスとテスト標準に従います。
我々は、機械学習の開発と展開のための実証されたシステムエンジニアリングアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-21T17:14:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。