Time-series Imputation of Temporally-occluded Multiagent Trajectories
- URL: http://arxiv.org/abs/2106.04219v1
- Date: Tue, 8 Jun 2021 09:58:43 GMT
- Title: Time-series Imputation of Temporally-occluded Multiagent Trajectories
- Authors: Shayegan Omidshafiei, Daniel Hennes, Marta Garnelo, Eugene Tarassov,
Zhe Wang, Romuald Elie, Jerome T. Connor, Paul Muller, Ian Graham, William
Spearman, Karl Tuyls
- Abstract summary: We study the problem of multiagent time-series imputation, where available past and future observations of subsets of agents are used to estimate missing observations for other agents.
Our approach, called the Graph Imputer, uses forward- and backward-information in combination with graph networks and variational autoencoders.
We evaluate our approach on a dataset of football matches, using a projective camera module to train and evaluate our model for the off-screen player state estimation setting.
- Score: 18.862173210927658
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In multiagent environments, several decision-making individuals interact
while adhering to the dynamics constraints imposed by the environment. These
interactions, combined with the potential stochasticity of the agents'
decision-making processes, make such systems complex and interesting to study
from a dynamical perspective. Significant research has been conducted on
learning models for forward-direction estimation of agent behaviors, for
example, pedestrian predictions used for collision-avoidance in self-driving
cars. However, in many settings, only sporadic observations of agents may be
available in a given trajectory sequence. For instance, in football, subsets of
players may come in and out of view of broadcast video footage, while
unobserved players continue to interact off-screen. In this paper, we study the
problem of multiagent time-series imputation, where available past and future
observations of subsets of agents are used to estimate missing observations for
other agents. Our approach, called the Graph Imputer, uses forward- and
backward-information in combination with graph networks and variational
autoencoders to enable learning of a distribution of imputed trajectories. We
evaluate our approach on a dataset of football matches, using a projective
camera module to train and evaluate our model for the off-screen player state
estimation setting. We illustrate that our method outperforms several
state-of-the-art approaches, including those hand-crafted for football.
Related papers
- Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z) - Visual Affordance Prediction for Guiding Robot Exploration [56.17795036091848]
We develop an approach for learning visual affordances for guiding robot exploration.
We use a Transformer-based model to learn a conditional distribution in the latent embedding space of a VQ-VAE.
We show how the trained affordance model can be used for guiding exploration by acting as a goal-sampling distribution, during visual goal-conditioned policy learning in robotic manipulation.
arXiv Detail & Related papers (2023-05-28T17:53:09Z) - Deep Interactive Motion Prediction and Planning: Playing Games with
Motion Prediction Models [162.21629604674388]
This work presents a game-theoretic Model Predictive Controller (MPC) that uses a novel interactive multi-agent neural network policy as part of its predictive model.
Fundamental to the success of our method is the design of a novel multi-agent policy network that can steer a vehicle given the state of the surrounding agents and the map information.
arXiv Detail & Related papers (2022-04-05T17:58:18Z) - SMEMO: Social Memory for Trajectory Forecasting [34.542209630734234]
We present a neural network based on an end-to-end trainable working memory, which acts as an external storage.
We show that our method is capable of learning explainable cause-effect relationships between motions of different agents, obtaining state-of-the-art results on trajectory forecasting datasets.
arXiv Detail & Related papers (2022-03-23T14:40:20Z) - LatentFormer: Multi-Agent Transformer-Based Interaction Modeling and
Trajectory Prediction [12.84508682310717]
We propose LatentFormer, a transformer-based model for predicting future vehicle trajectories.
We evaluate the proposed method on the nuScenes benchmark dataset and show that our approach achieves state-of-the-art performance and improves upon trajectory metrics by up to 40%.
arXiv Detail & Related papers (2022-03-03T17:44:58Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPOD is a novel method for predicting body dynamics based on graph attentional networks.
To incorporate a real-world challenge, we learn an indicator representing whether an estimated body joint is visible/invisible at each frame.
Our evaluation shows that TRiPOD outperforms all prior work and state-of-the-art specifically designed for each of the trajectory and pose forecasting tasks.
arXiv Detail & Related papers (2021-04-08T20:01:00Z) - Instance-Aware Predictive Navigation in Multi-Agent Environments [93.15055834395304]
We propose an Instance-Aware Predictive Control (IPC) approach, which forecasts interactions between agents as well as future scene structures.
We adopt a novel multi-instance event prediction module to estimate the possible interaction among agents in the ego-centric view.
We design a sequential action sampling strategy to better leverage predicted states on both scene-level and instance-level.
arXiv Detail & Related papers (2021-01-14T22:21:25Z) - Robust Trajectory Forecasting for Multiple Intelligent Agents in Dynamic
Scene [11.91073327154494]
We present a novel method for robust trajectory forecasting of multiple agents in dynamic scenes.
The proposed method outperforms the state-of-the-art prediction methods in terms of prediction accuracy.
arXiv Detail & Related papers (2020-05-27T02:32:55Z) - Diverse and Admissible Trajectory Forecasting through Multimodal Context
Understanding [46.52703817997932]
Multi-agent trajectory forecasting in autonomous driving requires an agent to accurately anticipate the behaviors of the surrounding vehicles and pedestrians.
We propose a model that synthesizes multiple input signals from the multimodal world.
We show a significant performance improvement over previous state-of-the-art methods.
arXiv Detail & Related papers (2020-03-06T13:59:39Z) - MCENET: Multi-Context Encoder Network for Homogeneous Agent Trajectory
Prediction in Mixed Traffic [35.22312783822563]
Trajectory prediction in urban mixedtraffic zones is critical for many intelligent transportation systems.
We propose an approach named Multi-Context Network (MCENET) that is trained by encoding both past and future scene context.
In inference time, we combine the past context and motion information of the target agent with samplings of the latent variables to predict multiple realistic trajectories.
arXiv Detail & Related papers (2020-02-14T11:04:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.