BIGDML: Towards Exact Machine Learning Force Fields for Materials
- URL: http://arxiv.org/abs/2106.04229v1
- Date: Tue, 8 Jun 2021 10:14:57 GMT
- Title: BIGDML: Towards Exact Machine Learning Force Fields for Materials
- Authors: Huziel E. Sauceda, Luis E. G\'alvez-Gonz\'alez, Stefan Chmiela, Lauro
Oliver Paz-Borb\'on, Klaus-Robert M\"uller, Alexandre Tkatchenko
- Abstract summary: Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof.
Here, we introduce the Bravais-Inspired Gradient-Domain Machine Learning approach and demonstrate its ability to construct reliable force fields using a training set with just 10-200 atoms.
- Score: 55.944221055171276
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine-learning force fields (MLFF) should be accurate, computationally and
data efficient, and applicable to molecules, materials, and interfaces thereof.
Currently, MLFFs often introduce tradeoffs that restrict their practical
applicability to small subsets of chemical space or require exhaustive datasets
for training. Here, we introduce the Bravais-Inspired Gradient-Domain Machine
Learning (BIGDML) approach and demonstrate its ability to construct reliable
force fields using a training set with just 10-200 geometries for materials
including pristine and defect-containing 2D and 3D semiconductors and metals,
as well as chemisorbed and physisorbed atomic and molecular adsorbates on
surfaces. The BIGDML model employs the full relevant symmetry group for a given
material, does not assume artificial atom types or localization of atomic
interactions and exhibits high data efficiency and state-of-the-art energy
accuracies (errors substantially below 1 meV per atom) for an extended set of
materials. Extensive path-integral molecular dynamics carried out with BIGDML
models demonstrate the counterintuitive localization of benzene--graphene
dynamics induced by nuclear quantum effects and allow to rationalize the
Arrhenius behavior of hydrogen diffusion coefficient in a Pd crystal for a wide
range of temperatures.
Related papers
- Predicting ionic conductivity in solids from the machine-learned potential energy landscape [68.25662704255433]
Superionic materials are essential for advancing solid-state batteries, which offer improved energy density and safety.
Conventional computational methods for identifying such materials are resource-intensive and not easily scalable.
We propose an approach for the quick and reliable evaluation of ionic conductivity through the analysis of a universal interatomic potential.
arXiv Detail & Related papers (2024-11-11T09:01:36Z) - Data-Driven Parametrization of Molecular Mechanics Force Fields for Expansive Chemical Space Coverage [16.745564099126575]
We develop ByteFF, an Amber-compatible force field for drug-like molecules.
Our model predicts all bonded and non-bonded MM force field parameters for drug-like molecules simultaneously across a broad chemical space.
arXiv Detail & Related papers (2024-08-23T03:37:06Z) - Multi-task learning for molecular electronic structure approaching coupled-cluster accuracy [9.81014501502049]
We develop a unified machine learning method for electronic structures of organic molecules using the gold-standard CCSD(T) calculations as training data.
Tested on hydrocarbon molecules, our model outperforms DFT with the widely-used hybrid and double hybrid functionals in computational costs and prediction accuracy of various quantum chemical properties.
arXiv Detail & Related papers (2024-05-09T19:51:27Z) - Data-Efficient Molecular Generation with Hierarchical Textual Inversion [48.816943690420224]
We introduce Hierarchical textual Inversion for Molecular generation (HI-Mol), a novel data-efficient molecular generation method.
HI-Mol is inspired by the importance of hierarchical information, e.g., both coarse- and fine-grained features, in understanding the molecule distribution.
Compared to the conventional textual inversion method in the image domain using a single-level token embedding, our multi-level token embeddings allow the model to effectively learn the underlying low-shot molecule distribution.
arXiv Detail & Related papers (2024-05-05T08:35:23Z) - Overcoming the Barrier of Orbital-Free Density Functional Theory for
Molecular Systems Using Deep Learning [46.08497356503155]
Orbital-free density functional theory (OFDFT) is a quantum chemistry formulation that has a lower cost scaling than the prevailing Kohn-Sham DFT.
Here we propose M-OFDFT, an OFDFT approach capable of solving molecular systems using a deep learning functional model.
arXiv Detail & Related papers (2023-09-28T16:33:36Z) - Molecular Geometry-aware Transformer for accurate 3D Atomic System
modeling [51.83761266429285]
We propose a novel Transformer architecture that takes nodes (atoms) and edges (bonds and nonbonding atom pairs) as inputs and models the interactions among them.
Moleformer achieves state-of-the-art on the initial state to relaxed energy prediction of OC20 and is very competitive in QM9 on predicting quantum chemical properties.
arXiv Detail & Related papers (2023-02-02T03:49:57Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes.
Recently, machine learned force fields (MLFFs) emerged as an alternative means to execute MD simulations.
This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations.
arXiv Detail & Related papers (2022-05-17T13:08:28Z) - A Universal Framework for Featurization of Atomistic Systems [0.0]
Reactive force fields based on physics or machine learning can be used to bridge the gap in time and length scales.
We introduce the Gaussian multi-pole (GMP) featurization scheme that utilizes physically-relevant multi-pole expansions of the electron density around atoms.
We demonstrate that GMP-based models can achieve chemical accuracy for the QM9 dataset, and their accuracy remains reasonable even when extrapolating to new elements.
arXiv Detail & Related papers (2021-02-04T03:11:00Z) - Predicting molecular dipole moments by combining atomic partial charges
and atomic dipoles [3.0980025155565376]
"MuML" models are fitted together to reproduce molecular $boldsymbolmu$ computed using high-level coupled-cluster theory.
We demonstrate that the uncertainty in the predictions can be estimated reliably using a calibrated committee model.
arXiv Detail & Related papers (2020-03-27T14:35:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.