Multi-task learning for molecular electronic structure approaching coupled-cluster accuracy
- URL: http://arxiv.org/abs/2405.12229v2
- Date: Mon, 24 Jun 2024 21:16:36 GMT
- Title: Multi-task learning for molecular electronic structure approaching coupled-cluster accuracy
- Authors: Hao Tang, Brian Xiao, Wenhao He, Pero Subasic, Avetik R. Harutyunyan, Yao Wang, Fang Liu, Haowei Xu, Ju Li,
- Abstract summary: We develop a unified machine learning method for electronic structures of organic molecules using the gold-standard CCSD(T) calculations as training data.
Tested on hydrocarbon molecules, our model outperforms DFT with the widely-used hybrid and double hybrid functionals in computational costs and prediction accuracy of various quantum chemical properties.
- Score: 9.81014501502049
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning (ML) plays an important role in quantum chemistry, providing fast-to-evaluate predictive models for various properties of molecules. However, most existing ML models for molecular electronic properties use density functional theory (DFT) databases as ground truth in training, and their prediction accuracy cannot surpass that of DFT. In this work, we developed a unified ML method for electronic structures of organic molecules using the gold-standard CCSD(T) calculations as training data. Tested on hydrocarbon molecules, our model outperforms DFT with the widely-used hybrid and double hybrid functionals in computational costs and prediction accuracy of various quantum chemical properties. As case studies, we apply the model to aromatic compounds and semiconducting polymers on both ground state and excited state properties, demonstrating its accuracy and generalization capability to complex systems that are hard to calculate using CCSD(T)-level methods.
Related papers
- Electronic excited states from physically-constrained machine learning [0.0]
We present an integrated modeling approach, in which a symmetry-adapted ML model of an effective Hamiltonian is trained to reproduce electronic excitations from a quantum-mechanical calculation.
The resulting model can make predictions for molecules that are much larger and more complex than those that it is trained on.
arXiv Detail & Related papers (2023-11-01T20:49:59Z) - Overcoming the Barrier of Orbital-Free Density Functional Theory for
Molecular Systems Using Deep Learning [46.08497356503155]
Orbital-free density functional theory (OFDFT) is a quantum chemistry formulation that has a lower cost scaling than the prevailing Kohn-Sham DFT.
Here we propose M-OFDFT, an OFDFT approach capable of solving molecular systems using a deep learning functional model.
arXiv Detail & Related papers (2023-09-28T16:33:36Z) - Accurate machine learning force fields via experimental and simulation
data fusion [0.0]
Machine Learning (ML)-based force fields are attracting ever-increasing interest due to their capacity to span scales of classical interatomic potentials at quantum-level accuracy.
Here we leverage both Density Functional Theory (DFT) calculations and experimentally measured mechanical properties and lattice parameters to train an ML potential of titanium.
We demonstrate that the fused data learning strategy can concurrently satisfy all target objectives, thus resulting in a molecular model of higher accuracy compared to the models trained with a single source data.
arXiv Detail & Related papers (2023-08-17T18:22:19Z) - QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules [69.25826391912368]
We generate a new Quantum Hamiltonian dataset, named as QH9, to provide precise Hamiltonian matrices for 999 or 2998 molecular dynamics trajectories.
We show that current machine learning models have the capacity to predict Hamiltonian matrices for arbitrary molecules.
arXiv Detail & Related papers (2023-06-15T23:39:07Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
We develop molecular embeddings that encode complex molecular characteristics to improve the performance of few-shot molecular property prediction.
Our approach leverages large amounts of synthetic data, namely the results of molecular docking calculations.
On multiple molecular property prediction benchmarks, training from the embedding space substantially improves Multi-Task, MAML, and Prototypical Network few-shot learning performance.
arXiv Detail & Related papers (2023-02-04T01:32:40Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes.
Recently, machine learned force fields (MLFFs) emerged as an alternative means to execute MD simulations.
This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations.
arXiv Detail & Related papers (2022-05-17T13:08:28Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof.
Here, we introduce the Bravais-Inspired Gradient-Domain Machine Learning approach and demonstrate its ability to construct reliable force fields using a training set with just 10-200 atoms.
arXiv Detail & Related papers (2021-06-08T10:14:57Z) - Learning the exchange-correlation functional from nature with fully
differentiable density functional theory [0.0]
We train a neural network to replace the exchange-correlation functional within a fully-differentiable three-dimensional Kohn-Sham density functional theory framework.
Our trained exchange-correlation network provided improved prediction of atomization and ionization energies across a collection of 110 molecules.
arXiv Detail & Related papers (2021-02-08T14:25:10Z) - A Universal Framework for Featurization of Atomistic Systems [0.0]
Reactive force fields based on physics or machine learning can be used to bridge the gap in time and length scales.
We introduce the Gaussian multi-pole (GMP) featurization scheme that utilizes physically-relevant multi-pole expansions of the electron density around atoms.
We demonstrate that GMP-based models can achieve chemical accuracy for the QM9 dataset, and their accuracy remains reasonable even when extrapolating to new elements.
arXiv Detail & Related papers (2021-02-04T03:11:00Z) - Multi-task learning for electronic structure to predict and explore
molecular potential energy surfaces [39.228041052681526]
We refine the OrbNet model to accurately predict energy, forces, and other response properties for molecules.
The model is end-to-end differentiable due to the derivation of analytic gradients for all electronic structure terms.
It is shown to be transferable across chemical space due to the use of domain-specific features.
arXiv Detail & Related papers (2020-11-05T06:48:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.