Selection rules in symmetry-broken systems by symmetries in synthetic
dimensions
- URL: http://arxiv.org/abs/2106.04301v1
- Date: Tue, 8 Jun 2021 12:57:26 GMT
- Title: Selection rules in symmetry-broken systems by symmetries in synthetic
dimensions
- Authors: Matan Even Tzur, Ofer Neufeld, Avner Fleischer, Oren Cohen
- Abstract summary: We show that symmetry-broken systems systematically exhibit a new class of symmetries and selection rules.
The new class of symmetries & selection rules extends the scope of existing symmetry breaking spectroscopy techniques.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Selection rules are often considered a hallmark of symmetry. When a symmetry
is broken, e.g., by an external perturbation, the system exhibits selection
rule deviations which are often analyzed by perturbation theory. Here, we
employ symmetry-breaking degrees of freedom as synthetic dimensions, to
demonstrate that symmetry-broken systems systematically exhibit a new class of
symmetries and selection rules. These selection rules determine the scaling of
a system's observables (to all orders in the strength of the symmetry-breaking
perturbation) as it transitions from symmetric to symmetry-broken. We
specifically analyze periodically driven (Floquet) systems subject to two
driving fields, where the first field imposes a spatio-temporal symmetry, and
the second field breaks it, imposing a symmetry in synthetic dimensions. We
tabulate the resulting synthetic symmetries for (2+1)D Floquet group symmetries
and derive the corresponding selection rules for high harmonic generation (HHG)
and above-threshold ionization (ATI). Finally, we observe experimentally HHG
selection rules imposed by symmetries in synthetic dimensions. The new class of
symmetries & selection rules extends the scope of existing symmetry breaking
spectroscopy techniques, opening new routes for ultrafast spectroscopy of
phonon-polarization, spin-orbit coupling, and more.
Related papers
- Robust Symmetry Detection via Riemannian Langevin Dynamics [39.342336146118015]
We propose a novel symmetry detection method that marries classical symmetry detection techniques with recent advances in generative modeling.
Specifically, we apply Langevin dynamics to a symmetry space to enhance robustness against noise.
We provide empirical results on a variety of shapes that suggest our method is not only robust to noise, but can also identify both partial and global symmetries.
arXiv Detail & Related papers (2024-09-18T02:28:20Z) - Variational Inference Failures Under Model Symmetries: Permutation Invariant Posteriors for Bayesian Neural Networks [43.88179780450706]
We investigate the impact of weight space permutation symmetries on variational inference.
We devise a symmetric symmetrization mechanism for constructing permutation invariant variational posteriors.
We show that the symmetrized distribution has a strictly better fit to the true posterior, and that it can be trained using the original ELBO objective.
arXiv Detail & Related papers (2024-08-10T09:06:34Z) - Spontaneous symmetry breaking in open quantum systems: strong, weak, and strong-to-weak [4.41737598556146]
We show that strong symmetry always spontaneously breaks into the corresponding weak symmetry.
We conjecture that this relation among strong-to-weak symmetry breaking, gapless modes, and symmetry-charge diffusion is general for continuous symmetries.
arXiv Detail & Related papers (2024-06-27T17:55:36Z) - Subsystem Symmetry Fractionalization and Foliated Field Theory [0.0]
Topological quantum matter exhibits a range of exotic phenomena when enriched by subdimensional symmetries.
A recently discovered example is a type of subsystem symmetry fractionalization that occurs through a different mechanism to global symmetry fractionalization.
arXiv Detail & Related papers (2024-03-14T04:44:11Z) - Latent Space Symmetry Discovery [31.28537696897416]
We propose a novel generative model, Latent LieGAN, which can discover symmetries of nonlinear group actions.
We show that our model can express nonlinear symmetries under some conditions about the group action.
LaLiGAN also results in a well-structured latent space that is useful for downstream tasks including equation discovery and long-term forecasting.
arXiv Detail & Related papers (2023-09-29T19:33:01Z) - Identifying the Group-Theoretic Structure of Machine-Learned Symmetries [41.56233403862961]
We propose methods for examining and identifying the group-theoretic structure of such machine-learned symmetries.
As an application to particle physics, we demonstrate the identification of the residual symmetries after the spontaneous breaking of non-Abelian gauge symmetries.
arXiv Detail & Related papers (2023-09-14T17:03:50Z) - On discrete symmetries of robotics systems: A group-theoretic and
data-driven analysis [38.92081817503126]
We study discrete morphological symmetries of dynamical systems.
These symmetries arise from the presence of one or more planes/axis of symmetry in the system's morphology.
We exploit these symmetries using data augmentation and $G$-equivariant neural networks.
arXiv Detail & Related papers (2023-02-21T04:10:16Z) - Reflection and Rotation Symmetry Detection via Equivariant Learning [40.61825212385055]
We introduce a group-equivariant convolutional network for symmetry detection, dubbed EquiSym.
We present a new dataset, DENse and DIverse symmetry (DENDI), which mitigates limitations of existing benchmarks for reflection and rotation symmetry detection.
Experiments show that our method achieves the state of the arts in symmetry detection on LDRS and DENDI datasets.
arXiv Detail & Related papers (2022-03-31T04:18:33Z) - Symmetry protected entanglement in random mixed states [0.0]
We study the effect of symmetry on tripartite entanglement properties of typical states in symmetric sectors of Hilbert space.
In particular, we consider Abelian symmetries and derive an explicit expression for the logarithmic entanglement negativity of systems with $mathbbZ_N$ and $U(1)$ symmetry groups.
arXiv Detail & Related papers (2021-11-30T19:00:07Z) - Symmetry-Protected Scattering in Non-Hermitian Linear Systems [0.0]
The symmetry-protected scattering in non-Hermitian linear systems is investigated by employing the discrete symmetries that classify the random matrices.
The odd-parity symmetries including the particle-hole symmetry, chiral symmetry, and sublattice symmetry cannot ensure the scattering to be symmetric.
Our findings provide fundamental insights into symmetry and scattering ranging from condensed matter physics to quantum physics and optics.
arXiv Detail & Related papers (2021-01-04T10:30:00Z) - Latent symmetry induced degeneracies [0.0]
We develop an approach to explain degeneracies by tracing them back to symmetries of an isospectral effective Hamiltonian.
As an application, we relate the degeneracies induced by the rotation symmetry of a real Hamiltonian to a non-abelian latent symmetry group.
arXiv Detail & Related papers (2020-11-26T17:37:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.