Analysis of Sparse Subspace Clustering: Experiments and Random
Projection
- URL: http://arxiv.org/abs/2204.00723v1
- Date: Fri, 1 Apr 2022 23:55:53 GMT
- Title: Analysis of Sparse Subspace Clustering: Experiments and Random
Projection
- Authors: Mehmet F. Demirel, Enrico Au-Yeung
- Abstract summary: Clustering is a technique that is used in many domains, such as face clustering, plant categorization, image segmentation, document classification.
We analyze one of these techniques: a powerful clustering algorithm called Sparse Subspace Clustering.
We demonstrate several experiments using this method and then introduce a new approach that can reduce the computational time required to perform sparse subspace clustering.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Clustering can be defined as the process of assembling objects into a number
of groups whose elements are similar to each other in some manner. As a
technique that is used in many domains, such as face clustering, plant
categorization, image segmentation, document classification, clustering is
considered one of the most important unsupervised learning problems. Scientists
have surveyed this problem for years and developed different techniques that
can solve it, such as k-means clustering. We analyze one of these techniques: a
powerful clustering algorithm called Sparse Subspace Clustering. We demonstrate
several experiments using this method and then introduce a new approach that
can reduce the computational time required to perform sparse subspace
clustering.
Related papers
- Dying Clusters Is All You Need -- Deep Clustering With an Unknown Number of Clusters [5.507296054825372]
Finding meaningful groups in high-dimensional data is an important challenge in data mining.
Deep clustering methods have achieved remarkable results in these tasks.
Most of these methods require the user to specify the number of clusters in advance.
This is a major limitation since the number of clusters is typically unknown if labeled data is unavailable.
Most of these approaches estimate the number of clusters separated from the clustering process.
arXiv Detail & Related papers (2024-10-12T11:04:10Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
We devise an efficient algorithm that recovers clusters using the observed labels.
We present Instance-Adaptive Clustering (IAC), the first algorithm whose performance matches these lower bounds both in expectation and with high probability.
arXiv Detail & Related papers (2023-06-18T08:46:06Z) - Convex Clustering through MM: An Efficient Algorithm to Perform
Hierarchical Clustering [1.0589208420411012]
We propose convex clustering through majorization-minimization ( CCMM) -- an iterative algorithm that uses cluster fusions and a highly efficient updating scheme.
With a current desktop computer, CCMM efficiently solves convex clustering problems featuring over one million objects in seven-dimensional space.
arXiv Detail & Related papers (2022-11-03T15:07:51Z) - Deep Clustering: A Comprehensive Survey [53.387957674512585]
Clustering analysis plays an indispensable role in machine learning and data mining.
Deep clustering, which can learn clustering-friendly representations using deep neural networks, has been broadly applied in a wide range of clustering tasks.
Existing surveys for deep clustering mainly focus on the single-view fields and the network architectures, ignoring the complex application scenarios of clustering.
arXiv Detail & Related papers (2022-10-09T02:31:32Z) - DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep
Neural Networks [53.88811980967342]
This paper presents a Deep Clustering via Ensembles (DeepCluE) approach.
It bridges the gap between deep clustering and ensemble clustering by harnessing the power of multiple layers in deep neural networks.
Experimental results on six image datasets confirm the advantages of DeepCluE over the state-of-the-art deep clustering approaches.
arXiv Detail & Related papers (2022-06-01T09:51:38Z) - Lattice-Based Methods Surpass Sum-of-Squares in Clustering [98.46302040220395]
Clustering is a fundamental primitive in unsupervised learning.
Recent work has established lower bounds against the class of low-degree methods.
We show that, perhaps surprisingly, this particular clustering model textitdoes not exhibit a statistical-to-computational gap.
arXiv Detail & Related papers (2021-12-07T18:50:17Z) - Weighted Sparse Subspace Representation: A Unified Framework for
Subspace Clustering, Constrained Clustering, and Active Learning [0.3553493344868413]
We first propose a novel spectral-based subspace clustering algorithm that seeks to represent each point as a sparse convex combination of a few nearby points.
We then extend the algorithm to constrained clustering and active learning settings.
Our motivation for developing such a framework stems from the fact that typically either a small amount of labelled data is available in advance; or it is possible to label some points at a cost.
arXiv Detail & Related papers (2021-06-08T13:39:43Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Probabilistic Partitive Partitioning (PPP) [0.0]
Clustering algorithms, in general, face two common problems.
They converge to different settings with different initial conditions.
The number of clusters has to be arbitrarily decided beforehand.
arXiv Detail & Related papers (2020-03-09T19:18:35Z) - Conjoined Dirichlet Process [63.89763375457853]
We develop a novel, non-parametric probabilistic biclustering method based on Dirichlet processes to identify biclusters with strong co-occurrence in both rows and columns.
We apply our method to two different applications, text mining and gene expression analysis, and demonstrate that our method improves bicluster extraction in many settings compared to existing approaches.
arXiv Detail & Related papers (2020-02-08T19:41:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.