論文の概要: CSRNet: Cascaded Selective Resolution Network for Real-time Semantic
Segmentation
- arxiv url: http://arxiv.org/abs/2106.04400v1
- Date: Tue, 8 Jun 2021 14:22:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-09 15:52:52.885275
- Title: CSRNet: Cascaded Selective Resolution Network for Real-time Semantic
Segmentation
- Title(参考訳): CSRNet:リアルタイムセマンティックセグメンテーションのためのカスケード選択分解ネットワーク
- Authors: Jingjing Xiong, Lai-Man Po, Wing-Yin Yu, Chang Zhou, Pengfei Xian and
Weifeng Ou
- Abstract要約: 本稿では,リアルタイムセグメンテーションの性能向上を図るために,光カスケード選択分解ネットワーク(CSRNet)を提案する。
提案するネットワークは,低解像度から高解像度までの特徴情報を統合した3段階セグメンテーションシステムを構築している。
2つのよく知られたデータセットの実験により、提案したCSRNetはリアルタイムセグメンテーションの性能を効果的に向上することを示した。
- 参考スコア(独自算出の注目度): 18.63596070055678
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-time semantic segmentation has received considerable attention due to
growing demands in many practical applications, such as autonomous vehicles,
robotics, etc. Existing real-time segmentation approaches often utilize feature
fusion to improve segmentation accuracy. However, they fail to fully consider
the feature information at different resolutions and the receptive fields of
the networks are relatively limited, thereby compromising the performance. To
tackle this problem, we propose a light Cascaded Selective Resolution Network
(CSRNet) to improve the performance of real-time segmentation through multiple
context information embedding and enhanced feature aggregation. The proposed
network builds a three-stage segmentation system, which integrates feature
information from low resolution to high resolution and achieves feature
refinement progressively. CSRNet contains two critical modules: the Shorted
Pyramid Fusion Module (SPFM) and the Selective Resolution Module (SRM). The
SPFM is a computationally efficient module to incorporate the global context
information and significantly enlarge the receptive field at each stage. The
SRM is designed to fuse multi-resolution feature maps with various receptive
fields, which assigns soft channel attentions across the feature maps and helps
to remedy the problem caused by multi-scale objects. Comprehensive experiments
on two well-known datasets demonstrate that the proposed CSRNet effectively
improves the performance for real-time segmentation.
- Abstract(参考訳): リアルタイムセマンティクスセグメンテーションは、自動運転車やロボティクスなど、多くの実用的なアプリケーションで需要が高まっているため、多くの注目を集めている。
既存のリアルタイムセグメンテーションアプローチは、しばしば機能融合を利用してセグメンテーション精度を向上させる。
しかし、異なる解像度で特徴情報を十分に考慮することができず、ネットワークの受容領域は比較的限られており、性能が向上する。
この問題に対処するために,複数のコンテキスト情報埋め込みと機能集約の強化により,リアルタイムセグメンテーションの性能を向上させるための軽量カスケード選択分解ネットワーク(CSRNet)を提案する。
提案するネットワークは,低解像度から高解像度までの特徴情報を統合し,段階的に機能改善を実現する3段階セグメンテーションシステムを構築する。
CSRNetには、SPFM(Shorted Pyramid Fusion Module)とSRM(Selective Resolution Module)の2つの重要なモジュールが含まれている。
SPFMは、グローバルコンテキスト情報を組み込んだ計算効率の良いモジュールであり、各ステージにおける受容場を大幅に拡大する。
srmは、マルチレゾリューション機能マップと様々な受容フィールドを融合して、機能マップにソフトチャネルの注意を割り当て、マルチスケールオブジェクトによって引き起こされる問題を解決するために設計されている。
2つのよく知られたデータセットに関する総合実験により、提案したCSRNetがリアルタイムセグメンテーションの性能を効果的に向上することを示した。
関連論文リスト
- Remote Sensing Image Segmentation Using Vision Mamba and Multi-Scale Multi-Frequency Feature Fusion [9.098711843118629]
本稿では、状態空間モデル(SSM)を導入し、視覚マンバ(CVMH-UNet)に基づく新しいハイブリッドセマンティックセマンティックネットワークを提案する。
本手法は、クロス2Dスキャン(CS2D)を用いて、複数の方向からグローバル情報をフルにキャプチャする、クロス走査型視覚状態空間ブロック(CVSSBlock)を設計する。
ローカル情報取得におけるビジョン・マンバ(VMamba)の制約を克服するために畳み込みニューラルネットワークのブランチを組み込むことにより、このアプローチはグローバル機能とローカル機能の両方の包括的な分析を促進する。
論文 参考訳(メタデータ) (2024-10-08T02:17:38Z) - FANet: Feature Amplification Network for Semantic Segmentation in Cluttered Background [9.970265640589966]
既存のディープラーニングアプローチでは、複雑なシナリオに存在するセマンティックセグメンテーションにおいて重要なセマンティックな方法が残されている。
マルチステージ機能拡張モジュールを用いて意味情報を組み込んだバックボーンネットワークとして機能増幅ネットワーク(FANet)を提案する。
実験の結果,既存の手法と比較して最先端の性能が示された。
論文 参考訳(メタデータ) (2024-07-12T15:57:52Z) - Multi-view Aggregation Network for Dichotomous Image Segmentation [76.75904424539543]
Dichotomous Image (DIS) は近年,高解像度自然画像からの高精度物体分割に向けて出現している。
既存の手法は、グローバルなローカライゼーションと局所的な洗練を徐々に完了させるために、退屈な複数のエンコーダ・デコーダストリームとステージに依存している。
これに触発されて、我々は多視点オブジェクト認識問題としてdisをモデル化し、擬似多視点アグリゲーションネットワーク(MVANet)を提供する。
一般的なdis-5Kデータセットの実験では、我々のMVANetは精度と速度の両方で最先端の手法を大きく上回っている。
論文 参考訳(メタデータ) (2024-04-11T03:00:00Z) - ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection [65.59969454655996]
本稿では,変化領域を正確に推定するために,リッチな文脈情報を利用する効率的な変化検出フレームワークELGC-Netを提案する。
提案するELGC-Netは、リモートセンシング変更検出ベンチマークにおいて、最先端の性能を新たに設定する。
また,ELGC-Net-LWも導入した。
論文 参考訳(メタデータ) (2024-03-26T17:46:25Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS)は、コンピュータビジョンと自然言語処理を組み合わせた新しい課題である。
従来の参照画像(RIS)アプローチは、空中画像に見られる複雑な空間スケールと向きによって妨げられている。
本稿ではRMSIN(Rotated Multi-Scale Interaction Network)を紹介する。
論文 参考訳(メタデータ) (2023-12-19T08:14:14Z) - Hi-ResNet: Edge Detail Enhancement for High-Resolution Remote Sensing Segmentation [10.919956120261539]
高分解能リモートセンシング(HRS)セマンティックセマンティクスは、高分解能カバレッジ領域からキーオブジェクトを抽出する。
HRS画像内の同じカテゴリのオブジェクトは、多様な地理的環境におけるスケールと形状の顕著な違いを示す。
効率的なネットワーク構造を持つ高分解能リモートセンシングネットワーク(Hi-ResNet)を提案する。
論文 参考訳(メタデータ) (2023-05-22T03:58:25Z) - Semantic Attention and Scale Complementary Network for Instance
Segmentation in Remote Sensing Images [54.08240004593062]
本稿では,セマンティックアテンション(SEA)モジュールとスケール補完マスクブランチ(SCMB)で構成される,エンドツーエンドのマルチカテゴリインスタンスセグメンテーションモデルを提案する。
SEAモジュールは、機能マップ上の興味あるインスタンスのアクティベーションを強化するために、追加の監督を備えた、単純な完全な畳み込みセマンティックセマンティックセマンティクスブランチを含んでいる。
SCMBは、元のシングルマスクブランチをトリデントマスクブランチに拡張し、異なるスケールで補完マスクの監視を導入する。
論文 参考訳(メタデータ) (2021-07-25T08:53:59Z) - Deep feature selection-and-fusion for RGB-D semantic segmentation [8.831857715361624]
本研究は,fsfnet (unified and efficient feature selection and-fusion network) を提案する。
FSFNetは、マルチモダリティ情報の明示的な融合に使用される対称クロスモダリティ残留融合モジュールを含む。
最新の手法と比較すると,提案モデルが2つの公開データセットで競合性能を発揮できることを実験的に評価した。
論文 参考訳(メタデータ) (2021-05-10T04:02:32Z) - Multi-Attention-Network for Semantic Segmentation of Fine Resolution
Remote Sensing Images [10.835342317692884]
リモートセンシング画像におけるセマンティックセグメンテーションの精度は、ディープ畳み込みニューラルネットワークによって著しく向上した。
本稿では,これらの問題に対処するマルチアテンション・ネットワーク(MANet)を提案する。
線形複雑性を伴うカーネル注意の新たなアテンション機構が提案され,注目される計算負荷の低減が図られた。
論文 参考訳(メタデータ) (2020-09-03T09:08:02Z) - RGB-D Salient Object Detection with Cross-Modality Modulation and
Selection [126.4462739820643]
本稿では, RGB-D Salient Object Detection (SOD) において, モジュール間相補性を段階的に統合し, 改良する有効な方法を提案する。
提案するネットワークは,1)RGB画像とそれに対応する深度マップからの補完情報を効果的に統合する方法,および2)より精度の高い特徴を適応的に選択する方法の2つの課題を主に解決する。
論文 参考訳(メタデータ) (2020-07-14T14:22:50Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
本稿では,HSIの空間分解能を高めるために,CUCaNetというクロスアテンション機構を備えた新しい結合型アンミックスネットワークを提案する。
3つの広く使われているHS-MSデータセットに対して、最先端のHSI-SRモデルと比較実験を行った。
論文 参考訳(メタデータ) (2020-07-10T08:08:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。