論文の概要: ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection
- arxiv url: http://arxiv.org/abs/2403.17909v1
- Date: Tue, 26 Mar 2024 17:46:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 14:08:24.533696
- Title: ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection
- Title(参考訳): ELGC-Net: リモートセンシング変化検出のためのローカル・グローバル・コンテキスト・アグリゲーション
- Authors: Mubashir Noman, Mustansar Fiaz, Hisham Cholakkal, Salman Khan, Fahad Shahbaz Khan,
- Abstract要約: 本稿では,変化領域を正確に推定するために,リッチな文脈情報を利用する効率的な変化検出フレームワークELGC-Netを提案する。
提案するELGC-Netは、リモートセンシング変更検出ベンチマークにおいて、最先端の性能を新たに設定する。
また,ELGC-Net-LWも導入した。
- 参考スコア(独自算出の注目度): 65.59969454655996
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning has shown remarkable success in remote sensing change detection (CD), aiming to identify semantic change regions between co-registered satellite image pairs acquired at distinct time stamps. However, existing convolutional neural network and transformer-based frameworks often struggle to accurately segment semantic change regions. Moreover, transformers-based methods with standard self-attention suffer from quadratic computational complexity with respect to the image resolution, making them less practical for CD tasks with limited training data. To address these issues, we propose an efficient change detection framework, ELGC-Net, which leverages rich contextual information to precisely estimate change regions while reducing the model size. Our ELGC-Net comprises a Siamese encoder, fusion modules, and a decoder. The focus of our design is the introduction of an Efficient Local-Global Context Aggregator module within the encoder, capturing enhanced global context and local spatial information through a novel pooled-transpose (PT) attention and depthwise convolution, respectively. The PT attention employs pooling operations for robust feature extraction and minimizes computational cost with transposed attention. Extensive experiments on three challenging CD datasets demonstrate that ELGC-Net outperforms existing methods. Compared to the recent transformer-based CD approach (ChangeFormer), ELGC-Net achieves a 1.4% gain in intersection over union metric on the LEVIR-CD dataset, while significantly reducing trainable parameters. Our proposed ELGC-Net sets a new state-of-the-art performance in remote sensing change detection benchmarks. Finally, we also introduce ELGC-Net-LW, a lighter variant with significantly reduced computational complexity, suitable for resource-constrained settings, while achieving comparable performance. Project url https://github.com/techmn/elgcnet.
- Abstract(参考訳): 深層学習は、異なる時刻スタンプで取得した衛星画像ペア間の意味変化領域を特定することを目的として、リモートセンシング変化検出(CD)において顕著な成功を収めている。
しかしながら、既存の畳み込みニューラルネットワークとトランスフォーマーベースのフレームワークは、セマンティックチェンジ領域を正確にセグメント化するのに苦労することが多い。
さらに、標準的な自己注意型トランスフォーマーベースの手法は、画像解像度に関して2次計算の複雑さに悩まされ、訓練データに制限のあるCDタスクでは実用的でない。
これらの問題に対処するため,モデルサイズを小さくしながら,変化領域を正確に推定するために,リッチなコンテキスト情報を活用する効率的な変更検出フレームワークELGC-Netを提案する。
我々のELGC-Netは、シームズエンコーダ、融合モジュール、デコーダからなる。
設計の焦点は、エンコーダ内に効率的なローカル・グローバル・コンテキスト・アグリゲータ・モジュールを導入し、新しいプール配置(PT)アテンションと深度ワイド・コンボリューションによって、拡張されたグローバル・コンテクストと局所空間情報をキャプチャすることである。
PTアテンションは、ロバストな特徴抽出のためにプール操作を採用し、アテンションを変換して計算コストを最小化する。
3つの挑戦的なCDデータセットに関する大規模な実験は、ELGC-Netが既存の手法より優れていることを示している。
最近の変換器ベースのCDアプローチ(ChangeFormer)と比較すると、ELGC-NetはLEVIR-CDデータセット上での結合距離よりも1.4%増加し、トレーニング可能なパラメータは大幅に減少する。
提案するELGC-Netは、リモートセンシング変更検出ベンチマークにおいて、最先端の性能を新たに設定する。
最後に,ELGC-Net-LWを導入し,計算量を大幅に削減し,リソース制約の設定に適した軽量化を実現した。
Project url https://github.com/techmn/elgcnet.com
関連論文リスト
- Relating CNN-Transformer Fusion Network for Change Detection [23.025190360146635]
RCTNetは、空間的特徴と時間的特徴の両方を利用する早期融合バックボーンを導入した。
実験では、従来のRS画像CD法よりもRCTNetの方が明らかに優れていることを示した。
論文 参考訳(メタデータ) (2024-07-03T14:58:40Z) - ChangeBind: A Hybrid Change Encoder for Remote Sensing Change Detection [16.62779899494721]
変化検出(CD)は、異なる時刻スタンプで同じ地理的領域間の意味的変化を検出することを目的とした、リモートセンシング(RS)の基本課題である。
本稿では,バイテンポラルRS画像における意味変化をエンコードする,効果的なSiameseベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-26T17:47:14Z) - Change Guiding Network: Incorporating Change Prior to Guide Change Detection in Remote Sensing Imagery [6.5026098921977145]
本研究では,変化特徴の表現問題に対処するためにCGNet(Change Guiding Network)を設計する。
CGNetは、マルチスケール機能融合を導くために、リッチなセマンティック情報を持つ変更マップを生成する。
Change Guide Module (CGM) と呼ばれる自己保持モジュールは、画素間の長距離依存を効果的に捉えることができる。
論文 参考訳(メタデータ) (2024-04-14T08:09:33Z) - TransY-Net:Learning Fully Transformer Networks for Change Detection of
Remote Sensing Images [64.63004710817239]
リモートセンシング画像CDのためのトランスフォーマーベース学習フレームワークTransY-Netを提案する。
グローバルな視点からの特徴抽出を改善し、ピラミッド方式で多段階の視覚的特徴を組み合わせる。
提案手法は,4つの光学式および2つのSAR画像CDベンチマーク上での最先端性能を実現する。
論文 参考訳(メタデータ) (2023-10-22T07:42:19Z) - Low-Resolution Self-Attention for Semantic Segmentation [96.81482872022237]
我々は,グローバルコンテキストを計算コストの大幅な削減で捉えるために,低解像度自己認識(LRSA)機構を導入する。
我々のアプローチは、入力画像の解像度に関わらず、固定された低解像度空間における自己注意を計算することである。
本稿では,エンコーダ・デコーダ構造を持つビジョントランスであるLRFormerを構築することで,LRSA手法の有効性を示す。
論文 参考訳(メタデータ) (2023-10-08T06:10:09Z) - Salient Object Detection in Optical Remote Sensing Images Driven by
Transformer [69.22039680783124]
光リモートセンシング画像(ORSI-SOD)のためのGlobal extract Local Exploration Network(GeleNet)を提案する。
具体的には、GeleNetはまずトランスフォーマーバックボーンを採用し、グローバルな長距離依存関係を持つ4レベルの機能埋め込みを生成する。
3つの公開データセットに関する大規模な実験は、提案されたGeleNetが関連する最先端メソッドより優れていることを示している。
論文 参考訳(メタデータ) (2023-09-15T07:14:43Z) - Adaptive Sparse Convolutional Networks with Global Context Enhancement
for Faster Object Detection on Drone Images [26.51970603200391]
本稿では,スパース畳み込みに基づく検出ヘッドの最適化について検討する。
これは、小さなオブジェクトのコンテキスト情報の不十分な統合に悩まされる。
本稿では,グローバルな文脈拡張型適応スパース畳み込みネットワークを提案する。
論文 参考訳(メタデータ) (2023-03-25T14:42:50Z) - DLGSANet: Lightweight Dynamic Local and Global Self-Attention Networks
for Image Super-Resolution [83.47467223117361]
画像の超解像化に有効な軽量な動的局所・大域自己アテンションネットワーク(DLGSANet)を提案する。
トランスフォーマーのネットワーク設計により,ローカル特徴を効率的に抽出するシンプルなマルチヘッド動的自己アテンション(MHDLSA)モジュールを開発した。
この問題を解決するために,最も有用な類似値を選択するために,スパースグローバル自己アテンション(SparseGSA)モジュールを開発した。
論文 参考訳(メタデータ) (2023-01-05T12:06:47Z) - MCTNet: A Multi-Scale CNN-Transformer Network for Change Detection in
Optical Remote Sensing Images [7.764449276074902]
MCTNetと呼ばれるマルチスケールCNN変換器構造に基づくハイブリッドネットワークを提案する。
MCTNetは既存の最先端CD法よりも優れた検出性能が得られることを示す。
論文 参考訳(メタデータ) (2022-10-14T07:54:28Z) - Conformer: Local Features Coupling Global Representations for Visual
Recognition [72.9550481476101]
本稿では,畳み込み操作と自己アテンション機構を利用した表現学習のためのハイブリッドネットワーク構造,conformerを提案する。
実験では、コンフォーマーが同等のパラメータ複雑性の下で視覚変換器(DeiT-B)を2.3%上回ることが示されている。
論文 参考訳(メタデータ) (2021-05-09T10:00:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。