論文の概要: CLTR: An End-to-End, Transformer-Based System for Cell Level Table
Retrieval and Table Question Answering
- arxiv url: http://arxiv.org/abs/2106.04441v2
- Date: Wed, 9 Jun 2021 17:09:53 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-10 10:49:22.554977
- Title: CLTR: An End-to-End, Transformer-Based System for Cell Level Table
Retrieval and Table Question Answering
- Title(参考訳): CLTR: セルレベルテーブル検索とテーブル質問応答のためのエンド・ツー・エンド変換システム
- Authors: Feifei Pan, Mustafa Canim, Michael Glass, Alfio Gliozzo, Peter Fox
- Abstract要約: 本稿では,最初のエンドツーエンドのテーブル質問応答(QA)システムを提案する。
自然言語の質問と大量のテーブルコーパスを入力として、最も関係のあるテーブルを検索し、質問に答えるために正しいテーブルセルを見つける。
76,242テーブル上の2,005の自然言語質問からなる2つの新しいオープンドメインベンチマークであるE2E_WTQとE2E_GNQを導入する。
- 参考スコア(独自算出の注目度): 8.389189333083513
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present the first end-to-end, transformer-based table question answering
(QA) system that takes natural language questions and massive table corpus as
inputs to retrieve the most relevant tables and locate the correct table cells
to answer the question. Our system, CLTR, extends the current state-of-the-art
QA over tables model to build an end-to-end table QA architecture. This system
has successfully tackled many real-world table QA problems with a simple,
unified pipeline. Our proposed system can also generate a heatmap of candidate
columns and rows over complex tables and allow users to quickly identify the
correct cells to answer questions. In addition, we introduce two new
open-domain benchmarks, E2E_WTQ and E2E_GNQ, consisting of 2,005 natural
language questions over 76,242 tables. The benchmarks are designed to validate
CLTR as well as accommodate future table retrieval and end-to-end table QA
research and experiments. Our experiments demonstrate that our system is the
current state-of-the-art model on the table retrieval task and produces
promising results for end-to-end table QA.
- Abstract(参考訳): 本稿では,自然言語質問と膨大なテーブルコーパスを入力として,最も関係のあるテーブルを検索し,質問に答えるために正しいテーブルセルを見つける,最初のエンドツーエンドのトランスフォーマーベースのテーブル質問応答(qa)システムを提案する。
我々のシステムであるCLTRは、現在の最先端QAをテーブルモデル上に拡張し、エンドツーエンドのテーブルQAアーキテクチャを構築します。
このシステムは、単純な統一パイプラインで多くの現実世界のテーブルQA問題に取り組むことに成功した。
提案システムでは,複雑なテーブル上の候補列と行のヒートマップを生成することができ,質問に答える正しいセルを素早く特定できる。
さらに,76,242テーブル上の2,005の自然言語質問からなる2つの新しいオープンドメインベンチマークであるE2E_WTQとE2E_GNQを導入する。
ベンチマークはCLTRを検証するとともに、将来のテーブル検索とエンドツーエンドのテーブルQAの研究と実験に対応するように設計されている。
実験により,本システムはテーブル検索タスクにおける最先端モデルであり,エンドツーエンドのテーブルQAに対して有望な結果が得られた。
関連論文リスト
- SynTQA: Synergistic Table-based Question Answering via Mixture of Text-to-SQL and E2E TQA [25.09488366689108]
テキスト・ツー・パースとエンドツーエンド質問応答(E2E TQA)は、表に基づく質問回答タスクの2つの主要なアプローチである。
複数のベンチマークで成功したが、まだ比較されておらず、相乗効果は未解明のままである。
ベンチマークデータセットの最先端モデルを評価することによって、さまざまな長所と短所を識別する。
論文 参考訳(メタデータ) (2024-09-25T07:18:45Z) - TabPedia: Towards Comprehensive Visual Table Understanding with Concept Synergy [81.76462101465354]
本稿では,概念相乗効果機構を備えた新しい大型視触覚モデルTabPediaを提案する。
この統合されたフレームワークにより、TabPediaはテーブル検出、テーブル構造認識、テーブルクエリ、テーブル質問応答などのVTUタスクをシームレスに統合できる。
実世界のシナリオにおけるVTUタスクをよりよく評価するために、新しい総合的なテーブルVQAベンチマークComTQAを構築した。
論文 参考訳(メタデータ) (2024-06-03T13:54:05Z) - KET-QA: A Dataset for Knowledge Enhanced Table Question Answering [63.56707527868466]
本研究では,TableQAの外部知識源として知識ベース(KB)を用いることを提案する。
すべての質問は、答えるテーブルとサブグラフの両方からの情報を統合する必要がある。
我々は,膨大な知識サブグラフから関連する情報を抽出するために,レトリバー・レゾナー構造パイプラインモデルを設計する。
論文 参考訳(メタデータ) (2024-05-13T18:26:32Z) - Is Table Retrieval a Solved Problem? Exploring Join-Aware Multi-Table Retrieval [52.592071689901196]
本稿では,テーブル検索において,任意のクエリやデータベースに対して有用な結合関係を明らかにする手法を提案する。
提案手法は,F1スコアの最大9.3%,エンドツーエンドQAの最大5.4%の精度で,テーブル検索の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2024-04-15T15:55:01Z) - Augment before You Try: Knowledge-Enhanced Table Question Answering via
Table Expansion [57.53174887650989]
テーブル質問応答は、構造化されたデータを理解し、相互作用するモデルの能力を評価する一般的なタスクである。
既存の方法は表と外部の知識の両方をテキストに変換し、表の構造的な性質を無視する。
そこで本稿では,表に外部情報を統合するための簡易で効果的な手法を提案する。
論文 参考訳(メタデータ) (2024-01-28T03:37:11Z) - MultiTabQA: Generating Tabular Answers for Multi-Table Question
Answering [61.48881995121938]
実世界のクエリは本質的に複雑で、リレーショナルデータベースやWebページ内の複数のテーブルにまたがることが多い。
我々のモデルであるMultiTabQAは、複数のテーブル上の質問に答えるだけでなく、表形式の回答を生成するために一般化する。
論文 参考訳(メタデータ) (2023-05-22T08:25:15Z) - A Survey on Table Question Answering: Recent Advances [10.874446530132087]
テーブル質問回答(Table Question Answering, 表QA)は、ユーザの質問に答えるために、テーブルから正確な回答を提供する。
既存のテーブルQAの手法を,その手法により5つのカテゴリに分類する。
本稿では,いくつかの重要な課題を特定し,今後のテーブルQAの方向性について論じる。
論文 参考訳(メタデータ) (2022-07-12T02:44:40Z) - OmniTab: Pretraining with Natural and Synthetic Data for Few-shot
Table-based Question Answering [106.73213656603453]
最小限のアノテーションによるテーブルベースのQAモデルを構築した。
本稿では、自然データと合成データの両方を消費する全能事前学習手法を提案する。
論文 参考訳(メタデータ) (2022-07-08T01:23:45Z) - End-to-End Table Question Answering via Retrieval-Augmented Generation [19.89730342792824]
本稿では、T-RAGというテーブルQAモデルを紹介し、非パラメトリックな高密度ベクトルインデックスをパラメトリックシーケンス・ツー・シーケンスモデルであるBARTと組み合わせて微調整し、応答トークンを生成する。
自然言語の問題があれば、T-RAGは統合パイプラインを使用してテーブルコーパスを自動で検索し、テーブルセルから正しい回答を直接見つけ出す。
論文 参考訳(メタデータ) (2022-03-30T23:30:16Z) - Multi-Row, Multi-Span Distant Supervision For Table+Text Question [33.809732338627136]
テーブル上の質問応答(QA)と、TextTableQAとも呼ばれるリンクされたテキストは、近年重要な研究を目撃している。
両軸に沿って遠隔監視を行うように設計された変換器ベースのTextTableQAシステムであるMITQAを提案する。
論文 参考訳(メタデータ) (2021-12-14T12:48:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。