論文の概要: Random Forest classifier for EEG-based seizure prediction
- arxiv url: http://arxiv.org/abs/2106.04510v1
- Date: Wed, 2 Jun 2021 15:46:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-15 13:23:53.833697
- Title: Random Forest classifier for EEG-based seizure prediction
- Title(参考訳): 脳波に基づく発作予測のためのランダム森林分類器
- Authors: Remy Ben Messaoud and Mario Chavez
- Abstract要約: 本稿では,機械学習を用いたてんかん発作予測手法を提案する。
発作予測地平線(SPH)を5分,発作発生期間(SOP)を30分とするベンチマーク頭皮脳波CHB-MITデータセットの20例について検討した。
提案手法は感度82.07 %,低偽陽性率0.0799/hを実現している。
- 参考スコア(独自算出の注目度): 0.12183405753834559
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Epileptic seizure prediction has gained considerable interest in the
computational Epilepsy research community. This paper presents a Machine
Learning based method for epileptic seizure prediction which outperforms
state-of-the art methods. We compute a probability for a given epoch, of being
pre-ictal against interictal using the Random Forest classifier and introduce
new concepts to enhance the robustness of the algorithm to false alarms. We
assessed our method on 20 patients of the benchmark scalp EEG CHB-MIT dataset
for a seizure prediction horizon (SPH) of 5 minutes and a seizure occurrence
period (SOP) of 30 minutes. Our approach achieves a sensitivity of 82.07 % and
a low false positive rate (FPR) of 0.0799 /h. We also tested our approach on
intracranial EEG recordings.
- Abstract(参考訳): てんかん発作の予測は、計算てんかん研究コミュニティでかなりの関心を集めている。
本稿では,最先端技術に勝るてんかん発作予測のための機械学習手法を提案する。
我々は,ランダムフォレスト分類器を用いてinterictalに対して前ictalである確率を計算し,アルゴリズムのロバスト性を高めるための新しい概念を導入する。
発作予測地平線(SPH)を5分,発作発生期間(SOP)を30分とするベンチマーク頭皮脳波CHB-MITデータセットの20例について検討した。
本手法は82.07 %の感度と0.0799 /hの低偽陽性率(fpr)を達成する。
また頭蓋内脳波記録についても検討した。
関連論文リスト
- A Multi-Modal Non-Invasive Deep Learning Framework for Progressive Prediction of Seizures [10.250114060511134]
本稿では,発作の進行(発生に間に合う)予測を目的とした革新的なフレームワークを提案する。
本フレームワークでは,非侵襲脳波(EEG)および心電図(ECG)センサのネットワークから,高度なディープラーニング(DL)技術を用いてパーソナライズされたデータを利用する。
29例中95%の感度,98%の特異性,97%の精度が得られた。
論文 参考訳(メタデータ) (2024-10-26T04:06:09Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
セプシスは米国での院内死亡の主な原因である。
既存の予測モデルは通常、情報不足の少ない高品質なデータで訓練される。
限られた観察により信頼性の低い高リスク患者に対して,ロバストな能動センシングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-24T04:47:36Z) - Preictal Period Optimization for Deep Learning-Based Epileptic Seizure Prediction [0.0]
我々は頭皮脳波(EEG)信号を用いた発作予測のための競合的深層学習モデルを開発した。
オープンアクセス型CHB-MITデータセットを対象とした19名の小児患者を対象に,本モデルを訓練・評価した。
各患者のOPPを用いて、平均感度は99.31%、特異性は95.34%、AUCは99.35%、F1-スコアは97.46%と正しく同定された。
論文 参考訳(メタデータ) (2024-07-20T13:49:14Z) - Epilepsy Seizure Detection and Prediction using an Approximate Spiking
Convolutional Transformer [12.151626573534001]
本稿では, てんかん発作セグメントを検出し, 予測するために, ニューロモルフィック・スパイキング・コンボリューション・トランス (Spking Convolutional Transformer) を提案する。
ボストン小児病院-MIT(CHB-MIT)脳波データセットを用いたスパイキング・コンフォーマーモデルによる評価結果について報告する。
生の脳波データを入力として使用することにより、提案されたスパイキングコンフォーマーの平均感度は94.9%、特異度は99.3%に達した。
論文 参考訳(メタデータ) (2024-01-21T19:23:56Z) - Machine Learning Techniques for Predicting the Short-Term Outcome of
Resective Surgery in Lesional-Drug Resistance Epilepsy [1.759008116536278]
7つのディフフェレント分類アルゴリズムを用いてデータを解析した。
線形カーネルを持つサポートベクターマシン(SVM)の精度は76.1%であった。
論文 参考訳(メタデータ) (2023-02-10T13:04:47Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
神経活動を記録して発作を検出するインプラントデバイスは、発作を抑えるために警告を発したり神経刺激を誘発したりするために採用されている。
移植可能な発作検出システムでは、低出力で最先端のオンライン学習アルゴリズムを使用して、神経信号のドリフトに動的に適応することができる。
SOULはTSMCの28nmプロセスで0.1mm2を占め、1.5nJ/分級エネルギー効率を実現した。
論文 参考訳(メタデータ) (2021-10-01T23:01:20Z) - An End-to-End Deep Learning Approach for Epileptic Seizure Prediction [4.094649684498489]
畳み込みニューラルネットワーク(CNN)を用いたエンドツーエンドディープラーニングソリューションを提案する。
総合感度、誤予測率、受信機動作特性曲線下の面積は、それぞれ2つのデータセットで93.5%、0.063/h、0.981、98.8%、0.074/h、0.988に達する。
論文 参考訳(メタデータ) (2021-08-17T05:49:43Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
我々は,多くの地域の流行傾向を同時に予測するテンソル法を開発した。
stelarは離散時間差分方程式のシステムを通じて潜在時間正規化を組み込むことで長期予測を可能にする。
我々は、カウンティレベルと州レベルのCOVID-19データの両方を用いて実験を行い、このモデルが流行の興味深い潜伏パターンを識別できることを示します。
論文 参考訳(メタデータ) (2020-12-08T21:21:47Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
本稿では,電子カルテから心血管イベントを予測するための注意機構を備えたマルチタスク・リカレントニューラルネットワークを提案する。
提案手法は、NHS Foundation Trustの5年間のデータを用いて、標準的な臨床リスク予測器(QRISK)と機械学習の代替手段と比較される。
論文 参考訳(メタデータ) (2020-07-16T17:43:13Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。