論文の概要: SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing
- arxiv url: http://arxiv.org/abs/2407.16999v1
- Date: Wed, 24 Jul 2024 04:47:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-25 14:43:30.666622
- Title: SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing
- Title(参考訳): SepsisLab: 不確かさの定量化とアクティブセンシングによる早期セプシス予測
- Authors: Changchang Yin, Pin-Yu Chen, Bingsheng Yao, Dakuo Wang, Jeffrey Caterino, Ping Zhang,
- Abstract要約: セプシスは米国での院内死亡の主な原因である。
既存の予測モデルは通常、情報不足の少ない高品質なデータで訓練される。
限られた観察により信頼性の低い高リスク患者に対して,ロバストな能動センシングアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 67.8991481023825
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Sepsis is the leading cause of in-hospital mortality in the USA. Early sepsis onset prediction and diagnosis could significantly improve the survival of sepsis patients. Existing predictive models are usually trained on high-quality data with few missing information, while missing values widely exist in real-world clinical scenarios (especially in the first hours of admissions to the hospital), which causes a significant decrease in accuracy and an increase in uncertainty for the predictive models. The common method to handle missing values is imputation, which replaces the unavailable variables with estimates from the observed data. The uncertainty of imputation results can be propagated to the sepsis prediction outputs, which have not been studied in existing works on either sepsis prediction or uncertainty quantification. In this study, we first define such propagated uncertainty as the variance of prediction output and then introduce uncertainty propagation methods to quantify the propagated uncertainty. Moreover, for the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm to increase confidence by actively recommending clinicians to observe the most informative variables. We validate the proposed models in both publicly available data (i.e., MIMIC-III and AmsterdamUMCdb) and proprietary data in The Ohio State University Wexner Medical Center (OSUWMC). The experimental results show that the propagated uncertainty is dominant at the beginning of admissions to hospitals and the proposed algorithm outperforms state-of-the-art active sensing methods. Finally, we implement a SepsisLab system for early sepsis prediction and active sensing based on our pre-trained models. Clinicians and potential sepsis patients can benefit from the system in early prediction and diagnosis of sepsis.
- Abstract(参考訳): セプシスは米国での院内死亡の主な原因である。
早期敗血症発症予測および診断は敗血症患者の生存率を有意に向上させる可能性がある。
既存の予測モデルは、情報不足の少ない高品質なデータでトレーニングされるのが一般的であるが、実際の臨床シナリオ(特に病院に入院した最初の時間)には、欠落した値が広く存在し、精度が大幅に低下し、予測モデルの不確実性が増大する。
欠落した値を扱う一般的な方法は、計算不能な変数を観測データから推定値に置き換える計算法である。
計算結果の不確実性は, セプシス予測や不確実性定量化に関する既存の研究で研究されていないセプシス予測出力に伝播することができる。
本研究では,まず予測出力の分散として伝播不確実性を定義し,伝播不確実性を定量化する不確実性伝播法を導入する。
また, 信頼性の低い高リスク患者に対しては, 信頼性を高めるために, 臨床医に最も情報に富む変数の観察を積極的に勧めることにより, 能動的センシングアルゴリズムを提案する。
我々は,提案したモデルを,オハイオ州立大学ウェクスナー医療センター(OSUWMC)の公開データ(MIMIC-IIIとアムステルダムUMCdb)と独自データの両方で検証する。
実験結果から, 病院への入院開始当初において, 伝播不確実性が支配的であり, 提案アルゴリズムは, 最先端の能動センシング法よりも優れていた。
最後に、事前学習したモデルに基づいて、早期敗血症予測とアクティブセンシングのためのSepsisLabシステムを実装した。
臨床医および潜在的な敗血症患者は、敗血症の早期予測と診断において、システムから恩恵を受けることができる。
関連論文リスト
- Tractable Function-Space Variational Inference in Bayesian Neural
Networks [72.97620734290139]
ニューラルネットワークの予測不確かさを推定するための一般的なアプローチは、ネットワークパラメータに対する事前分布を定義することである。
本稿では,事前情報を組み込むスケーラブルな関数空間変動推論手法を提案する。
提案手法は,様々な予測タスクにおいて,最先端の不確実性評価と予測性能をもたらすことを示す。
論文 参考訳(メタデータ) (2023-12-28T18:33:26Z) - HypUC: Hyperfine Uncertainty Calibration with Gradient-boosted
Corrections for Reliable Regression on Imbalanced Electrocardiograms [3.482894964998886]
本稿では,医療時系列における不均衡確率回帰の枠組みであるHypUCを提案する。
HypUCは数百万の患者から収集された、多様で現実世界のECGデータセットで評価されている。
論文 参考訳(メタデータ) (2023-11-23T06:17:31Z) - NPRL: Nightly Profile Representation Learning for Early Sepsis Onset
Prediction in ICU Trauma Patients [5.476582906474746]
セプシス(Sepsis)は、感染の有無に応じて体内で発症する症候群である。
現在の機械学習アルゴリズムは性能が悪く、早期のセプシスの開始を予測できない。
我々は,前夜に収集した最新のデータを用いて,毎朝の敗血症を予測できる新しい,現実的な予測フレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-25T11:27:27Z) - Improving Trustworthiness of AI Disease Severity Rating in Medical
Imaging with Ordinal Conformal Prediction Sets [0.7734726150561088]
統計的に厳密な不確実性定量化の欠如は、AI結果の信頼を損なう重要な要因である。
分布自由不確実性定量化の最近の進歩は、これらの問題に対する実用的な解決策である。
本稿では, 正しい狭窄の重症度を含むことが保証される順序予測セットを形成する手法を実証する。
論文 参考訳(メタデータ) (2022-07-05T18:01:20Z) - A Machine Learning Model for Predicting, Diagnosing, and Mitigating
Health Disparities in Hospital Readmission [0.0]
本稿では,データ中のバイアスの検出と緩和とモデル予測が可能な機械学習パイプラインを提案する。
提案手法の有効性を,精度と公正度の測定値を用いて評価した。
論文 参考訳(メタデータ) (2022-06-13T16:07:25Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
既存の予測モデルは不確実な定量化を無視し、誤校正予測をもたらす。
不確実性を考慮した時系列予測のためのディープニューラルネットワークの最近の研究にもいくつかの制限がある。
本稿では,予測タスクを確率的生成過程としてモデル化し,EPIFNPと呼ばれる機能的ニューラルプロセスモデルを提案する。
論文 参考訳(メタデータ) (2021-06-07T18:31:47Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
認識の不確実性は、学習者の知識の欠如によるサンプル外の予測エラーの一部である。
一般化誤差の予測を学習し, aleatoric uncertaintyの推定を減算することで, 認識的不確かさを直接推定する原理的アプローチを提案する。
論文 参考訳(メタデータ) (2021-02-16T23:50:35Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Uncertainty estimation for classification and risk prediction on medical
tabular data [0.0]
本研究は,医療データの分類とリスク予測のための不確実性推定の理解を深めるものである。
医療などのデータ共有分野において、モデルの予測の不確実性を測定する能力は、意思決定支援ツールの改善につながる可能性がある。
論文 参考訳(メタデータ) (2020-04-13T08:46:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。