Classification of Exceptional Nodal Topologies Protected by
$\mathcal{PT}$ Symmetry
- URL: http://arxiv.org/abs/2106.04582v3
- Date: Mon, 15 Nov 2021 17:04:25 GMT
- Title: Classification of Exceptional Nodal Topologies Protected by
$\mathcal{PT}$ Symmetry
- Authors: Marcus St{\aa}lhammar, Emil J. Bergholtz
- Abstract summary: We classify exceptional nodal degeneracies protected by $mathcalPT$ symmetry in up to three dimensions.
These exceptional nodal topologies include previously overlooked possibilities such as second-order knotted surfaces of arbitrary genus, third-order knots and fourth-order points.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Exceptional degeneracies, at which both eigenvalues and eigenvectors
coalesce, and parity-time ($\mathcal{PT}$) symmetry, reflecting balanced gain
and loss in photonic systems, are paramount concepts in non-Hermitian systems.
We here complete the topological classification of exceptional nodal
degeneracies protected by $\mathcal{PT}$ symmetry in up to three dimensions and
provide simple example models whose exceptional nodal topologies include
previously overlooked possibilities such as second-order knotted surfaces of
arbitrary genus, third-order knots and fourth-order points.
Related papers
- Topological Order in the Spectral Riemann Surfaces of Non-Hermitian Systems [44.99833362998488]
We show topologically ordered states in the complex-valued spectra of non-Hermitian systems.
These arise when the distinctive exceptional points in the energy surfaces of such models are annihilated.
We illustrate the characteristics of the topologically protected states in a non-Hermitian two-band model.
arXiv Detail & Related papers (2024-10-24T10:16:47Z) - Hidden topology in flat-band topological insulators: strong, weak and square-root topological states [0.0]
We study a previously unexplored class of topological states protected by hidden chiral symmetries that are local.
We derive their related topological invariant for the first time, and show that these previously unidentified symmetries can act together with standard chiral symmetries to increase the protection of the end modes.
Thanks to local hidden symmetries, we show that the diamond necklace chain can have three different types of topological end modes: strong, weak or square-root.
arXiv Detail & Related papers (2024-10-18T14:46:07Z) - Three perspectives on entropy dynamics in a non-Hermitian two-state system [41.94295877935867]
entropy dynamics as an indicator of physical behavior in an open two-state system with balanced gain and loss is presented.
We distinguish the perspective taken in utilizing the conventional framework of Hermitian-adjoint states from an approach that is based on biorthogonal-adjoint states and a third case based on an isospectral mapping.
arXiv Detail & Related papers (2024-04-04T14:45:28Z) - Lifting topological codes: Three-dimensional subsystem codes from two-dimensional anyon models [44.99833362998488]
Topological subsystem codes allow for quantum error correction with no time overhead, even in the presence of measurement noise.
We provide a systematic construction of a class of codes in three dimensions built from abelian quantum double models in one fewer dimension.
Our construction not only generalizes the recently introduced subsystem toric code, but also provides a new perspective on several aspects of the original model.
arXiv Detail & Related papers (2023-05-10T18:00:01Z) - Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras
from First Principles [55.41644538483948]
We design a deep-learning algorithm for the discovery and identification of the continuous group of symmetries present in a labeled dataset.
We use fully connected neural networks to model the transformations symmetry and the corresponding generators.
Our study also opens the door for using a machine learning approach in the mathematical study of Lie groups and their properties.
arXiv Detail & Related papers (2023-01-13T16:25:25Z) - Non-Hermitian $C_{NH} = 2$ Chern insulator protected by generalized
rotational symmetry [85.36456486475119]
A non-Hermitian system is protected by the generalized rotational symmetry $H+=UHU+$ of the system.
Our finding paves the way towards novel non-Hermitian topological systems characterized by large values of topological invariants.
arXiv Detail & Related papers (2021-11-24T15:50:22Z) - Symmetry-protected multifold exceptional points and their topological
characterization [0.0]
We investigate the existence of higher order exceptional points (EPs) in non-Hermitian systems.
We show that $mu$-fold EPs are stable in $mu-1$ dimensions in the presence of anti-unitary symmetries.
We show different non-Hermitian topological transitions associated with these exceptional points, such as their merging and a transition to a regime where propagation becomes forbidden.
arXiv Detail & Related papers (2021-03-15T09:31:14Z) - Generalized string-nets for unitary fusion categories without
tetrahedral symmetry [77.34726150561087]
We present a general construction of the Levin-Wen model for arbitrary multiplicity-free unitary fusion categories.
We explicitly calculate the matrix elements of the Hamiltonian and, furthermore, show that it has the same properties as the original one.
arXiv Detail & Related papers (2020-04-15T12:21:28Z) - Subsystem symmetry enriched topological order in three dimensions [0.0]
We introduce a model of three-dimensional (3D) topological order enriched by planar subsystem symmetries.
We study the non-trivial action of the symmetries on boundary of this model, uncovering a mixed boundary anomaly between global and subsystem symmetries.
arXiv Detail & Related papers (2020-04-08T18:01:06Z) - Absolute anomalies in (2+1)D symmetry-enriched topological states and
exact (3+1)D constructions [0.0]
We show how to compute the anomaly for symmetry-enriched topological (SET) states of bosons in complete generality.
We present an exactly solvable Hamiltonian for the system and demonstrate explicitly a (2+1)D $G$ symmetric surface termination.
Our results can also be viewed as providing a method to compute the $mathcalH4(G, U(1))$ obstruction that arises in the theory of $G$-crossed braided tensor categories.
arXiv Detail & Related papers (2020-03-25T18:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.