論文の概要: NRGNN: Learning a Label Noise-Resistant Graph Neural Network on Sparsely
and Noisily Labeled Graphs
- arxiv url: http://arxiv.org/abs/2106.04714v1
- Date: Tue, 8 Jun 2021 22:12:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-10 15:06:43.775185
- Title: NRGNN: Learning a Label Noise-Resistant Graph Neural Network on Sparsely
and Noisily Labeled Graphs
- Title(参考訳): NRGNN:スパースグラフとノイズラベルグラフを用いたラベルノイズ耐性グラフニューラルネットワークの学習
- Authors: Enyan Dai, Charu Aggarwal, Suhang Wang
- Abstract要約: グラフニューラルネットワーク(GNN)は,ノード分類などのグラフ上の半教師付き学習タスクに対して,有望な結果を得た。
多くの実世界のグラフはスパースでノイズの多いラベルが付けられており、GNNの性能を著しく低下させる可能性がある。
半教師付きノード分類のためのラベルノイズ耐性GNNを提案する。
- 参考スコア(独自算出の注目度): 20.470934944907608
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have achieved promising results for
semi-supervised learning tasks on graphs such as node classification. Despite
the great success of GNNs, many real-world graphs are often sparsely and
noisily labeled, which could significantly degrade the performance of GNNs, as
the noisy information could propagate to unlabeled nodes via graph structure.
Thus, it is important to develop a label noise-resistant GNN for
semi-supervised node classification. Though extensive studies have been
conducted to learn neural networks with noisy labels, they mostly focus on
independent and identically distributed data and assume a large number of noisy
labels are available, which are not directly applicable for GNNs. Thus, we
investigate a novel problem of learning a robust GNN with noisy and limited
labels. To alleviate the negative effects of label noise, we propose to link
the unlabeled nodes with labeled nodes of high feature similarity to bring more
clean label information. Furthermore, accurate pseudo labels could be obtained
by this strategy to provide more supervision and further reduce the effects of
label noise. Our theoretical and empirical analysis verify the effectiveness of
these two strategies under mild conditions. Extensive experiments on real-world
datasets demonstrate the effectiveness of the proposed method in learning a
robust GNN with noisy and limited labels.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は,ノード分類などのグラフ上の半教師付き学習タスクに対して,有望な結果を得た。
GNNの大きな成功にもかかわらず、多くの実世界のグラフはしばしば疎結合でノイズの多いラベルが付けられ、GNNの性能は著しく低下する可能性がある。
したがって、半教師付きノード分類のためのラベルノイズ耐性GNNを開発することが重要である。
ニューラルネットをノイズラベルで学習するために広範な研究が行われてきたが、主に独立的で同一の分散データに焦点を当て、GNNに直接適用できない多数のノイズラベルが利用可能であると仮定している。
そこで本研究では,雑音や制限のあるラベルを持つ頑健なGNNを学習する新しい問題について検討する。
ラベルノイズの悪影響を軽減するために,ラベルのないノードと,特徴の類似度が高いラベル付きノードをリンクし,よりクリーンなラベル情報を提供する。
さらに、この戦略により正確な擬似ラベルを得ることができ、より監督し、さらにラベルノイズの影響を低減できる。
理論および実証分析により, 軽度条件下でのこれら2つの戦略の有効性が検証された。
実世界のデータセットに対する大規模な実験は、雑音と限定ラベルを持つ堅牢なGNN学習における提案手法の有効性を示す。
関連論文リスト
- Training a Label-Noise-Resistant GNN with Reduced Complexity [19.032199712090485]
グラフニューラルネットワーク(GNN)は、グラフ上の半教師付きノード分類タスクに広く利用されている。
GNNの性能はラベルノイズに大きく影響され、誤ラベル付きノードの数が少なければ、モデルトレーニングを著しく間違える可能性がある。
本稿では,ラベルノイズに対する堅牢なGNN学習のための低次複雑化手法であるラベルアンサンブルグラフニューラルネットワーク(LEGNN)を提案する。
論文 参考訳(メタデータ) (2024-11-17T09:52:20Z) - Graph Neural Networks with Coarse- and Fine-Grained Division for Mitigating Label Sparsity and Noise [5.943641527857957]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの処理において,半教師付き学習タスクにおいて注目されている。
現実のシナリオでは、グラフのノード上のラベルは必然的に騒々しく、わずかにラベル付けされているため、GNNのパフォーマンスは著しく低下する。
GNN-CFGD は,粗い分割やきめ細かな分割によるノイズラベルの負の影響を低減し,グラフ再構成を行う。
論文 参考訳(メタデータ) (2024-11-06T08:21:26Z) - ERASE: Error-Resilient Representation Learning on Graphs for Label Noise
Tolerance [53.73316938815873]
本稿では, ERASE (Error-Resilient representation learning on graphs for lAbel noiSe tolerancE) という手法を提案する。
ERASEは、プロトタイプの擬似ラベルとプロパゲーションされた識別ラベルを組み合わせて、表現をエラーレジリエンスで更新する。
提案手法は, 広い雑音レベルにおいて, 複数のベースラインをクリアマージンで上回り, 高いスケーラビリティを享受できる。
論文 参考訳(メタデータ) (2023-12-13T17:59:07Z) - GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels [81.93520935479984]
本稿では,ラベル付きおよび観測されたグラフに基づいて学習した特定のGNNモデルの性能を評価することを目的とした,新しい問題であるGNNモデル評価について検討する。
本稿では,(1) DiscGraph セット構築と(2) GNNEvaluator トレーニングと推論を含む2段階の GNN モデル評価フレームワークを提案する。
DiscGraphセットからの効果的なトレーニング監督の下で、GNNEvaluatorは、評価対象であるGNNモデルのノード分類精度を正確に推定することを学ぶ。
論文 参考訳(メタデータ) (2023-10-23T05:51:59Z) - Learning on Graphs under Label Noise [5.909452203428086]
我々は,ラベルノイズのあるグラフ上での学習問題を解決するために,CGNN(Consistent Graph Neural Network)と呼ばれる新しいアプローチを開発した。
具体的には、グラフの対比学習を正規化用語として採用し、拡張ノードの2つのビューが一貫した表現を持つように促進する。
グラフ上の雑音ラベルを検出するために,ホモフィリー仮定に基づくサンプル選択手法を提案する。
論文 参考訳(メタデータ) (2023-06-14T01:38:01Z) - Pseudo Contrastive Learning for Graph-based Semi-supervised Learning [67.37572762925836]
Pseudo Labelingは、グラフニューラルネットワーク(GNN)の性能向上に使用されるテクニックである。
我々はPseudo Contrastive Learning(PCL)と呼ばれるGNNのための一般的なフレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-19T10:34:08Z) - Robust Training of Graph Neural Networks via Noise Governance [27.767913371777247]
グラフニューラルネットワーク(GNN)は、半教師付き学習のモデルとして広く使われている。
本稿では,グラフノード上のラベルがうるさいだけでなく,難易度も低い重要なシナリオについて考察する。
本稿では,ラベルノイズを明示的に制御する学習により,ロバスト性を向上する新しいRTGNNフレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-12T09:25:32Z) - Informative Pseudo-Labeling for Graph Neural Networks with Few Labels [12.83841767562179]
グラフニューラルネットワーク(GNN)は、グラフ上の半教師付きノード分類のための最先端の結果を得た。
非常に少数のレーベルでGNNを効果的に学習する方法の課題は、まだ解明されていない。
我々は、非常に少ないラベルを持つGNNの学習を容易にするために、InfoGNNと呼ばれる新しい情報的擬似ラベルフレームワークを提案する。
論文 参考訳(メタデータ) (2022-01-20T01:49:30Z) - Noise-robust Graph Learning by Estimating and Leveraging Pairwise
Interactions [123.07967420310796]
本稿では,グラフ上のノイズノード分類のためのペアワイズフレームワークを提案することにより,そのギャップを埋める。
PI-GNNは、ノイズの多いノードクラスラベルからのポイントワイズ学習に加えて、PIを一次学習プロキシとして依存している。
提案するフレームワークPI-GNNは,(1)PIラベルを適応的に推定する信頼度を考慮したPI推定モデル,(2)PIラベルを推定する疎結合トレーニング手法の2つの新しい構成要素に寄与する。
論文 参考訳(メタデータ) (2021-06-14T14:23:08Z) - Cyclic Label Propagation for Graph Semi-supervised Learning [52.102251202186025]
本稿では,CycPropと呼ばれるグラフ半教師付き学習のための新しいフレームワークを提案する。
CycPropはGNNを周期的かつ相互に強化された方法でラベル伝播の過程に統合する。
特に,提案するCycPropでは,GNNモジュールが学習したノード埋め込みをラベル伝搬による拡張情報で更新する。
論文 参考訳(メタデータ) (2020-11-24T02:55:40Z) - Label-Consistency based Graph Neural Networks for Semi-supervised Node
Classification [47.753422069515366]
グラフニューラルネットワーク(GNN)は,グラフに基づく半教師付きノード分類において顕著な成功を収めている。
本稿では,GNNにおけるノードの受容領域を拡大するために,ノードペアが接続されていないが同一のラベルを持つラベル一貫性に基づくグラフニューラルネットワーク(LC-GNN)を提案する。
ベンチマークデータセットの実験では、LC-GNNはグラフベースの半教師付きノード分類において従来のGNNよりも優れていた。
論文 参考訳(メタデータ) (2020-07-27T11:17:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。