論文の概要: GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels
- arxiv url: http://arxiv.org/abs/2310.14586v2
- Date: Thu, 26 Oct 2023 23:08:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-30 16:25:39.911176
- Title: GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels
- Title(参考訳): GNNEvaluator:ラベルなしで見えないグラフ上でのGNNパフォーマンスの評価
- Authors: Xin Zheng, Miao Zhang, Chunyang Chen, Soheila Molaei, Chuan Zhou,
Shirui Pan
- Abstract要約: 本稿では,ラベル付きおよび観測されたグラフに基づいて学習した特定のGNNモデルの性能を評価することを目的とした,新しい問題であるGNNモデル評価について検討する。
本稿では,(1) DiscGraph セット構築と(2) GNNEvaluator トレーニングと推論を含む2段階の GNN モデル評価フレームワークを提案する。
DiscGraphセットからの効果的なトレーニング監督の下で、GNNEvaluatorは、評価対象であるGNNモデルのノード分類精度を正確に推定することを学ぶ。
- 参考スコア(独自算出の注目度): 81.93520935479984
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Evaluating the performance of graph neural networks (GNNs) is an essential
task for practical GNN model deployment and serving, as deployed GNNs face
significant performance uncertainty when inferring on unseen and unlabeled test
graphs, due to mismatched training-test graph distributions. In this paper, we
study a new problem, GNN model evaluation, that aims to assess the performance
of a specific GNN model trained on labeled and observed graphs, by precisely
estimating its performance (e.g., node classification accuracy) on unseen
graphs without labels. Concretely, we propose a two-stage GNN model evaluation
framework, including (1) DiscGraph set construction and (2) GNNEvaluator
training and inference. The DiscGraph set captures wide-range and diverse graph
data distribution discrepancies through a discrepancy measurement function,
which exploits the outputs of GNNs related to latent node embeddings and node
class predictions. Under the effective training supervision from the DiscGraph
set, GNNEvaluator learns to precisely estimate node classification accuracy of
the to-be-evaluated GNN model and makes an accurate inference for evaluating
GNN model performance. Extensive experiments on real-world unseen and unlabeled
test graphs demonstrate the effectiveness of our proposed method for GNN model
evaluation.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)の性能評価は、トレーニング-テストグラフの分布のミスマッチのため、目立たないテストグラフとラベル付けされていないテストグラフを推測すると、デプロイされたGNNが重大なパフォーマンスの不確実性に直面しているため、実用的なGNNモデルのデプロイと提供にとって必須のタスクである。
本稿では,ラベル付きおよび観測グラフ上で訓練された特定のGNNモデルの性能を評価することを目的とした,新しい問題であるGNNモデル評価について,ラベルのない未確認グラフ上での性能(ノード分類精度など)を正確に推定することを目的とした。
具体的には,(1) DiscGraph セットの構成と(2) GNNEvaluator トレーニングと推論を含む2段階の GNN モデル評価フレームワークを提案する。
DiscGraphセットは、遅延ノード埋め込みとノードクラス予測に関連するGNNの出力を利用する、差分測定機能を通じて、広範囲で多様なグラフデータ分散の相違をキャプチャする。
DiscGraphセットからの効果的なトレーニング監督の下で、GNNEvaluatorは、評価対象であるGNNモデルのノード分類精度を正確に推定し、GNNモデルの性能を評価するための正確な推論を行う。
実世界の未発見およびラベルのないテストグラフに関する広範囲な実験により,提案手法がgnnモデル評価に有効であることを実証した。
関連論文リスト
- Online GNN Evaluation Under Test-time Graph Distribution Shifts [92.4376834462224]
オンラインGNN評価という新たな研究課題は、よく訓練されたGNNが現実世界の未ラベルグラフに一般化する能力について、貴重な洞察を提供することを目的としている。
我々は、よく訓練されたGNNモデルのテスト時間一般化誤差を推定するために、LeBeDと呼ばれる効果的な学習行動不一致スコアを開発する。
論文 参考訳(メタデータ) (2024-03-15T01:28:08Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Task-Agnostic Graph Neural Network Evaluation via Adversarial
Collaboration [11.709808788756966]
GraphACは、分子表現学習のためのグラフニューラルネットワーク(GNN)の研究を評価するための、原則付き、タスクに依存し、安定したフレームワークである。
2つのGNNが互いに直接競合することから、共同で自分自身を更新できる、競争力のあるバーロウツインズ(Competitive Barlow Twins)という新しい客観的機能を導入します。
論文 参考訳(メタデータ) (2023-01-27T03:33:11Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
本稿では,グラフ間のGNNの事前学習プロセスの監視を目的とした,MentorGNNというエンドツーエンドモデルを提案する。
我々は、事前学習したGNNの一般化誤差に自然かつ解釈可能な上限を導出することにより、関係データ(グラフ)に対するドメイン適応の問題に新たな光を当てた。
論文 参考訳(メタデータ) (2022-08-21T15:12:08Z) - Distribution Preserving Graph Representation Learning [11.340722297341788]
グラフニューラルネットワーク(GNN)は、ノードとグラフ全体の分散表現のためのグラフをモデル化するのに有効である。
本稿では,表現型GNNモデルの一般化性を向上させるGNNフレームワークとして,分散保存GNN(DP-GNN)を提案する。
提案するDP-GNNフレームワークを,グラフ分類タスクのための複数のベンチマークデータセット上で評価する。
論文 参考訳(メタデータ) (2022-02-27T19:16:26Z) - Learning to Drop: Robust Graph Neural Network via Topological Denoising [50.81722989898142]
グラフニューラルネットワーク(GNN)のロバスト性および一般化性能を向上させるために,パラメータ化トポロジカルデノイングネットワークであるPTDNetを提案する。
PTDNetは、パラメータ化されたネットワークでスパーシファイドグラフ内のエッジ数をペナル化することで、タスク非関連エッジを創出する。
PTDNetはGNNの性能を著しく向上させ,さらにノイズの多いデータセットでは性能が向上することを示す。
論文 参考訳(メタデータ) (2020-11-13T18:53:21Z) - GPT-GNN: Generative Pre-Training of Graph Neural Networks [93.35945182085948]
グラフニューラルネットワーク(GNN)は、グラフ構造化データのモデリングにおいて強力であることが示されている。
生成事前学習によりGNNを初期化するためのGPT-GNNフレームワークを提案する。
GPT-GNNは、様々な下流タスクにおいて、事前トレーニングを最大9.1%行うことなく、最先端のGNNモデルを大幅に上回ることを示す。
論文 参考訳(メタデータ) (2020-06-27T20:12:33Z) - A Collective Learning Framework to Boost GNN Expressiveness [25.394456460032625]
教師付きおよび半教師付き設定におけるグラフニューラルネットワーク(GNN)を用いた帰納ノード分類の課題を考察する。
本稿では,既存のGNNの表現力を高めるための一般集団学習手法を提案する。
実世界の5つのネットワークデータセットの性能評価を行い、ノード分類精度が一貫した顕著な改善を示した。
論文 参考訳(メタデータ) (2020-03-26T22:07:28Z) - Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs [20.197085398581397]
グラフニューラルネットワーク(GNN)は最近、グラフベースのタスクにおける優れたパフォーマンスのために、多くの注目を集めている。
本稿では,既存のGNNモデルの出力を用いて,入力データの品質を向上させる自己強化型GNN(SEG)を提案する。
SEGは、GCN、GAT、SGCといったよく知られたGNNモデルのさまざまなデータセットのパフォーマンスを一貫して改善する。
論文 参考訳(メタデータ) (2020-02-18T12:27:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。