Towards Fast Simulation of Environmental Fluid Mechanics with
Multi-Scale Graph Neural Networks
- URL: http://arxiv.org/abs/2205.02637v1
- Date: Thu, 5 May 2022 13:33:03 GMT
- Title: Towards Fast Simulation of Environmental Fluid Mechanics with
Multi-Scale Graph Neural Networks
- Authors: Mario Lino, Stathi Fotiadis, Anil A. Bharath and Chris Cantwell
- Abstract summary: We introduce MultiScaleGNN, a novel multi-scale graph neural network model for learning to infer unsteady continuum mechanics.
We demonstrate this method on advection problems and incompressible fluid dynamics, both fundamental phenomena in oceanic and atmospheric processes.
Simulations obtained with MultiScaleGNN are between two and four orders of magnitude faster than those on which it was trained.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Numerical simulators are essential tools in the study of natural
fluid-systems, but their performance often limits application in practice.
Recent machine-learning approaches have demonstrated their ability to
accelerate spatio-temporal predictions, although, with only moderate accuracy
in comparison. Here we introduce MultiScaleGNN, a novel multi-scale graph
neural network model for learning to infer unsteady continuum mechanics in
problems encompassing a range of length scales and complex boundary geometries.
We demonstrate this method on advection problems and incompressible fluid
dynamics, both fundamental phenomena in oceanic and atmospheric processes. Our
results show good extrapolation to new domain geometries and parameters for
long-term temporal simulations. Simulations obtained with MultiScaleGNN are
between two and four orders of magnitude faster than those on which it was
trained.
Related papers
- Physics-enhanced Neural Operator for Simulating Turbulent Transport [9.923888452768919]
This paper presents a physics-enhanced neural operator (PENO) that incorporates physical knowledge of partial differential equations (PDEs) to accurately model flow dynamics.
The proposed method is evaluated through its performance on two distinct sets of 3D turbulent flow data.
arXiv Detail & Related papers (2024-05-31T20:05:17Z) - Enhancing Computational Efficiency in Multiscale Systems Using Deep Learning of Coordinates and Flow Maps [0.0]
This paper showcases how deep learning techniques can be used to develop a precise time-stepping approach for multiscale systems.
The resulting framework achieves state-of-the-art predictive accuracy while incurring lesser computational costs.
arXiv Detail & Related papers (2024-04-28T14:05:13Z) - Rethinking materials simulations: Blending direct numerical simulations
with neural operators [1.6874375111244329]
We develop a new method that blends numerical solvers with neural operators to accelerate such simulations.
We demonstrate the effectiveness of this framework on simulations of microstructure evolution during physical vapor deposition.
arXiv Detail & Related papers (2023-12-08T23:44:54Z) - Graph Convolutional Networks for Simulating Multi-phase Flow and Transport in Porous Media [0.0]
Data-driven surrogate modeling provides inexpensive alternatives to high-fidelity numerical simulators.
CNNs are powerful in approximating partial differential equation solutions, but it remains challenging for CNNs to handle irregular and unstructured simulation meshes.
We construct surrogate models based on Graph Convolutional Networks (GCNs) to approximate the spatial-temporal solutions of multi-phase flow and transport processes in porous media.
arXiv Detail & Related papers (2023-07-10T09:59:35Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
We introduce a deep learning-based corrector called Neural Vector (NeurVec)
NeurVec can compensate for integration errors and enable larger time step sizes in simulations.
Our experiments on a variety of complex dynamical system benchmarks demonstrate that NeurVec exhibits remarkable generalization capability.
arXiv Detail & Related papers (2022-08-07T09:02:18Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
We introduce Hybrid Graph Network Simulator (HGNS) for learning reservoir simulations of 3D subsurface fluid flows.
HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure.
Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators.
arXiv Detail & Related papers (2022-06-15T17:29:57Z) - Simulating Continuum Mechanics with Multi-Scale Graph Neural Networks [0.17205106391379021]
We introduce MultiScaleGNN, a network multi-scale neural graph model for learning to infer unsteady mechanics.
We show that the proposed model can generalise from uniform advection fields to high-gradient fields on complex domains at test time and infer long-term Navier-Stokes solutions within a range of Reynolds numbers.
arXiv Detail & Related papers (2021-06-09T08:37:38Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
We present a combination of accurate numerical simulations of arbitrary, flat, and non-flat channels and machine learning models predicting drag coefficient and Stanton number.
We show that convolutional neural networks (CNN) can accurately predict the target properties at a fraction of the time of numerical simulations.
arXiv Detail & Related papers (2021-01-19T16:14:02Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
We develop a hybrid (graph) neural network that combines a traditional graph convolutional network with an embedded differentiable fluid dynamics simulator inside the network itself.
We show that we can both generalize well to new situations and benefit from the substantial speedup of neural network CFD predictions.
arXiv Detail & Related papers (2020-07-08T21:23:19Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
We present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains.
Our framework---which we term "Graph Network-based Simulators" (GNS)--represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing.
Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time.
arXiv Detail & Related papers (2020-02-21T16:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.