Conditional Lagrangian Wasserstein Flow for Time Series Imputation
- URL: http://arxiv.org/abs/2410.07550v1
- Date: Thu, 10 Oct 2024 02:46:28 GMT
- Title: Conditional Lagrangian Wasserstein Flow for Time Series Imputation
- Authors: Weizhu Qian, Dalin Zhang, Yan Zhao,
- Abstract summary: We propose a novel method for time series imputation called Conditional Lagrangian Wasserstein Flow.
The proposed method leverages the (conditional) optimal transport theory to learn the probability flow in a simulation-free manner.
The experimental results on the real-word datasets show that the proposed method achieves competitive performance on time series imputation.
- Score: 3.914746375834628
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series imputation is important for numerous real-world applications. To overcome the limitations of diffusion model-based imputation methods, e.g., slow convergence in inference, we propose a novel method for time series imputation in this work, called Conditional Lagrangian Wasserstein Flow. The proposed method leverages the (conditional) optimal transport theory to learn the probability flow in a simulation-free manner, in which the initial noise, missing data, and observations are treated as the source distribution, target distribution, and conditional information, respectively. According to the principle of least action in Lagrangian mechanics, we learn the velocity by minimizing the corresponding kinetic energy. Moreover, to incorporate more prior information into the model, we parameterize the derivative of a task-specific potential function via a variational autoencoder, and combine it with the base estimator to formulate a Rao-Blackwellized sampler. The propose model allows us to take less intermediate steps to produce high-quality samples for inference compared to existing diffusion methods. Finally, the experimental results on the real-word datasets show that the proposed method achieves competitive performance on time series imputation compared to the state-of-the-art methods.
Related papers
- Semi-Implicit Functional Gradient Flow [30.32233517392456]
We propose a functional gradient ParVI method that uses perturbed particles as the approximation family.
The corresponding functional gradient flow, which can be estimated via denoising score matching, exhibits strong theoretical convergence guarantee.
arXiv Detail & Related papers (2024-10-23T15:00:30Z) - Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
We tackle the task of sampling from a probability density as transporting a tractable density function to the target.
We employ physics-informed neural networks (PINNs) to approximate the respective partial differential equations (PDEs) solutions.
PINNs allow for simulation- and discretization-free optimization and can be trained very efficiently.
arXiv Detail & Related papers (2024-07-10T17:39:50Z) - Improving Consistency Models with Generator-Induced Flows [16.049476783301724]
Consistency models imitate the multi-step sampling of score-based diffusion in a single forward pass of a neural network.
They can be learned in two ways: consistency distillation and consistency training.
We propose a novel flow that transports noisy data towards their corresponding outputs derived from the currently trained model.
arXiv Detail & Related papers (2024-06-13T20:22:38Z) - Space-Time Diffusion Bridge [0.4527270266697462]
We introduce a novel method for generating new synthetic samples independent and identically distributed from real probability distributions.
We use space-time mixing strategies that extend across temporal and spatial dimensions.
We validate the efficacy of our space-time diffusion approach with numerical experiments.
arXiv Detail & Related papers (2024-02-13T23:26:11Z) - A prior regularized full waveform inversion using generative diffusion
models [0.5156484100374059]
Full waveform inversion (FWI) has the potential to provide high-resolution subsurface model estimations.
Due to limitations in observation, e.g., regional noise, limited shots or receivers, and band-limited data, it is hard to obtain the desired high-resolution model with FWI.
We propose a new paradigm for FWI regularized by generative diffusion models.
arXiv Detail & Related papers (2023-06-22T10:10:34Z) - ShiftDDPMs: Exploring Conditional Diffusion Models by Shifting Diffusion
Trajectories [144.03939123870416]
We propose a novel conditional diffusion model by introducing conditions into the forward process.
We use extra latent space to allocate an exclusive diffusion trajectory for each condition based on some shifting rules.
We formulate our method, which we call textbfShiftDDPMs, and provide a unified point of view on existing related methods.
arXiv Detail & Related papers (2023-02-05T12:48:21Z) - Fast Sampling of Diffusion Models via Operator Learning [74.37531458470086]
We use neural operators, an efficient method to solve the probability flow differential equations, to accelerate the sampling process of diffusion models.
Compared to other fast sampling methods that have a sequential nature, we are the first to propose a parallel decoding method.
We show our method achieves state-of-the-art FID of 3.78 for CIFAR-10 and 7.83 for ImageNet-64 in the one-model-evaluation setting.
arXiv Detail & Related papers (2022-11-24T07:30:27Z) - Sampling with Mollified Interaction Energy Descent [57.00583139477843]
We present a new optimization-based method for sampling called mollified interaction energy descent (MIED)
MIED minimizes a new class of energies on probability measures called mollified interaction energies (MIEs)
We show experimentally that for unconstrained sampling problems our algorithm performs on par with existing particle-based algorithms like SVGD.
arXiv Detail & Related papers (2022-10-24T16:54:18Z) - Building Normalizing Flows with Stochastic Interpolants [11.22149158986164]
A simple generative quadratic model based on a continuous-time normalizing flow between any pair of base and target distributions is proposed.
The velocity field of this flow is inferred from the probability current of a time-dependent distribution that interpolates between the base and the target in finite time.
arXiv Detail & Related papers (2022-09-30T16:30:31Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
Current best practice advocates for a large T to ensure that the forward dynamics brings the diffusion sufficiently close to a known and simple noise distribution.
We show how an auxiliary model can be used to bridge the gap between the ideal and the simulated forward dynamics, followed by a standard reverse diffusion process.
arXiv Detail & Related papers (2022-06-10T15:09:46Z) - A Near-Optimal Gradient Flow for Learning Neural Energy-Based Models [93.24030378630175]
We propose a novel numerical scheme to optimize the gradient flows for learning energy-based models (EBMs)
We derive a second-order Wasserstein gradient flow of the global relative entropy from Fokker-Planck equation.
Compared with existing schemes, Wasserstein gradient flow is a smoother and near-optimal numerical scheme to approximate real data densities.
arXiv Detail & Related papers (2019-10-31T02:26:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.