Quantum Non-Hermitian Topological Sensors
- URL: http://arxiv.org/abs/2106.05297v2
- Date: Mon, 14 Feb 2022 18:38:45 GMT
- Title: Quantum Non-Hermitian Topological Sensors
- Authors: Florian Koch and Jan Carl Budich
- Abstract summary: We investigate in the framework of quantum noise theory how the striking boundary-sensitivity recently discovered in the context of non-Hermitian (NH) topological phases may be harnessed to devise novel quantum sensors.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate in the framework of quantum noise theory how the striking
boundary-sensitivity recently discovered in the context of non-Hermitian (NH)
topological phases may be harnessed to devise novel quantum sensors.
Specifically, we study a quantum-optical setting of coupled modes arranged in
an array with broken ring geometry that would realize a NH topological phase in
the classical limit. Using methods from quantum-information theory of Gaussian
states, we show that a small coupling induced between the ends of the broken
ring may be detected with a precision that increases exponentially in the
number of coupled modes, e.g. by heterodyne detection of two output modes.
While this robust effect only relies on reaching a NH topological regime, we
identify a resonance phenomenon without direct classical counterpart that
provides an experimental knob for drastically enhancing the aforementioned
exponential growth. Our findings pave the way towards designing quantum NH
topological sensors (QUANTOS) that may observe with high precision any physical
observable that couples to the boundary conditions of the device.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Critical non-Hermitian topology induced quantum sensing [0.0]
Non-Hermitian physics predicts open quantum system dynamics with unique topological features such as exceptional points and the non-Hermitian skin effect.
We show that this new paradigm of topological systems can serve as probes for bulk Hamiltonian parameters with quantum-enhanced sensitivity reaching Heisenberg scaling.
arXiv Detail & Related papers (2023-11-21T18:04:26Z) - Neural-network quantum states for ultra-cold Fermi gases [49.725105678823915]
This work introduces a novel Pfaffian-Jastrow neural-network quantum state that includes backflow transformation based on message-passing architecture.
We observe the emergence of strong pairing correlations through the opposite-spin pair distribution functions.
Our findings suggest that neural-network quantum states provide a promising strategy for studying ultra-cold Fermi gases.
arXiv Detail & Related papers (2023-05-15T17:46:09Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Non-Hermitian topological quantum states in a reservoir-engineered
transmon chain [0.0]
We show that a non-Hermitian quantum phase can be realized in a reservoir-engineered transmon chain.
We show that genuine quantum effects are observable in this system via robust and slowly decaying long-range quantum entanglement of the topological end modes.
arXiv Detail & Related papers (2022-10-06T15:21:21Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Two-mode Schr\"odinger-cat states with nonlinear optomechanics:
generation and verification of non-Gaussian mechanical entanglement [0.0]
We introduce a pulsed approach that utilizes the nonlinearity of the radiation-pressure interaction combined with photon-counting measurements.
We describe a protocol using subsequent pulsed interactions to verify the non-Gaussian entanglement generated.
Our scheme offers significant potential for further research and development that utilizes such non-Gaussian states for quantum-information and sensing applications.
arXiv Detail & Related papers (2021-09-17T12:58:52Z) - Qubit-photon bound states in topological waveguides with long-range
hoppings [62.997667081978825]
Quantum emitters interacting with photonic band-gap materials lead to the appearance of qubit-photon bound states.
We study the features of the qubit-photon bound states when the emitters couple to the bulk modes in the different phases.
We consider the coupling of emitters to the edge modes appearing in the different topological phases.
arXiv Detail & Related papers (2021-05-26T10:57:21Z) - Two-mode Phonon Squeezing in Bose-Einstein Condensates for Gravitational
Wave Detection [0.0]
The aim of this thesis is to find whether the recently described effect of an oscillating external potential on a uniform BEC can be exploited to generate two-mode squeezed phonon states.
The considered mechanism could find applications not only in the gravitational wave detector that originally motivated this work, but more generally in the field of quantum metrology based on ultracold atoms.
arXiv Detail & Related papers (2021-01-12T13:01:10Z) - Variational Simulation of Schwinger's Hamiltonian with Polarisation
Qubits [0.0]
We study the effect of noise on the quantum phase transition in the Schwinger model.
Experiments are built using a free space optical scheme to realize a pair of polarization qubits.
We find that despite the presence of noise one can detect the phase transition of the Schwinger Hamiltonian even for a two-qubit system.
arXiv Detail & Related papers (2020-09-21T00:39:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.