Long-time integration of parametric evolution equations with
physics-informed DeepONets
- URL: http://arxiv.org/abs/2106.05384v1
- Date: Wed, 9 Jun 2021 20:46:17 GMT
- Title: Long-time integration of parametric evolution equations with
physics-informed DeepONets
- Authors: Sifan Wang, Paris Perdikaris
- Abstract summary: We introduce an effective framework for learning infinite-dimensional operators that map random initial conditions to associated PDE solutions within a short time interval.
Global long-time predictions across a range of initial conditions can be then obtained by iteratively evaluating the trained model.
This introduces a new approach to temporal domain decomposition that is shown to be effective in performing accurate long-time simulations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Ordinary and partial differential equations (ODEs/PDEs) play a paramount role
in analyzing and simulating complex dynamic processes across all corners of
science and engineering. In recent years machine learning tools are aspiring to
introduce new effective ways of simulating PDEs, however existing approaches
are not able to reliably return stable and accurate predictions across long
temporal horizons. We aim to address this challenge by introducing an effective
framework for learning infinite-dimensional operators that map random initial
conditions to associated PDE solutions within a short time interval. Such
latent operators can be parametrized by deep neural networks that are trained
in an entirely self-supervised manner without requiring any paired input-output
observations. Global long-time predictions across a range of initial conditions
can be then obtained by iteratively evaluating the trained model using each
prediction as the initial condition for the next evaluation step. This
introduces a new approach to temporal domain decomposition that is shown to be
effective in performing accurate long-time simulations for a wide range of
parametric ODE and PDE systems, from wave propagation, to reaction-diffusion
dynamics and stiff chemical kinetics, all at a fraction of the computational
cost needed by classical numerical solvers.
Related papers
- PhyMPGN: Physics-encoded Message Passing Graph Network for spatiotemporal PDE systems [31.006807854698376]
We propose a new graph learning approach, namely, Physics-encoded Message Passing Graph Network (PhyMPGN)
We incorporate a GNN into a numerical integrator to approximate the temporal marching of partialtemporal dynamics for a given PDE system.
PhyMPGN is capable of accurately predicting various types of operatortemporal dynamics on coarse unstructured meshes.
arXiv Detail & Related papers (2024-10-02T08:54:18Z) - Learning Semilinear Neural Operators : A Unified Recursive Framework For Prediction And Data Assimilation [21.206744437644982]
We propose a learning-based state-space approach to compute solution operators to infinite-dimensional semilinear PDEs.
We develop a flexible method that allows for both prediction and data assimilation by combining prediction and correction operations.
We show through experiments on Kuramoto-Sivashinsky, Navier-Stokes and Korteweg-de Vries equations that the proposed model is robust to noise and can leverage arbitrary amounts of measurements to correct its prediction over a long time horizon with little computational overhead.
arXiv Detail & Related papers (2024-02-24T00:10:51Z) - Parametric Learning of Time-Advancement Operators for Unstable Flame
Evolution [0.0]
This study investigates the application of machine learning to learn time-advancement operators for parametric partial differential equations (PDEs)
Our focus is on extending existing operator learning methods to handle additional inputs representing PDE parameters.
The goal is to create a unified learning approach that accurately predicts short-term solutions and provides robust long-term statistics.
arXiv Detail & Related papers (2024-02-14T18:12:42Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
An AI framework, known as Neural Operators, presents a principled framework for learning mappings between functions defined on continuous domains.
Neural Operators can augment or even replace existing simulators in many applications, such as computational fluid dynamics, weather forecasting, and material modeling.
arXiv Detail & Related papers (2023-09-27T00:12:07Z) - Generalized Neural Closure Models with Interpretability [28.269731698116257]
We develop a novel and versatile methodology of unified neural partial delay differential equations.
We augment existing/low-fidelity dynamical models directly in their partial differential equation (PDE) forms with both Markovian and non-Markovian neural network (NN) closure parameterizations.
We demonstrate the new generalized neural closure models (gnCMs) framework using four sets of experiments based on advecting nonlinear waves, shocks, and ocean acidification models.
arXiv Detail & Related papers (2023-01-15T21:57:43Z) - Deep Convolutional Architectures for Extrapolative Forecast in
Time-dependent Flow Problems [0.0]
Deep learning techniques are employed to model the system dynamics for advection dominated problems.
These models take as input a sequence of high-fidelity vector solutions for consecutive time-steps obtained from the PDEs.
Non-intrusive reduced-order modelling techniques such as deep auto-encoder networks are utilized to compress the high-fidelity snapshots.
arXiv Detail & Related papers (2022-09-18T03:45:56Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
We present a novel method that combines a hyper-network solver with a Fourier Neural Operator architecture.
We test our method on various time evolution PDEs, including nonlinear fluid flows in one, two, and three spatial dimensions.
The results show that the new method improves the learning accuracy at the time point of supervision point, and is able to interpolate and the solutions to any intermediate time.
arXiv Detail & Related papers (2022-07-28T19:59:14Z) - Learning to Accelerate Partial Differential Equations via Latent Global
Evolution [64.72624347511498]
Latent Evolution of PDEs (LE-PDE) is a simple, fast and scalable method to accelerate the simulation and inverse optimization of PDEs.
We introduce new learning objectives to effectively learn such latent dynamics to ensure long-term stability.
We demonstrate up to 128x reduction in the dimensions to update, and up to 15x improvement in speed, while achieving competitive accuracy.
arXiv Detail & Related papers (2022-06-15T17:31:24Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.