An Interpretable Neural Network for Parameter Inference
- URL: http://arxiv.org/abs/2106.05536v1
- Date: Thu, 10 Jun 2021 06:56:01 GMT
- Title: An Interpretable Neural Network for Parameter Inference
- Authors: Johann Pfitzinger
- Abstract summary: This paper proposes a generative neural network architecture capable of estimating local posterior distributions for the parameters of a regression model.
The parameters fully explain predictions in terms of the inputs and permit visualization, interpretation and inference in the presence of complex heterogeneous effects and feature dependencies.
The proposed neural network is particularly well-suited to applications in economics and finance, where parameter inference plays an important role.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adoption of deep neural networks in fields such as economics or finance has
been constrained by the lack of interpretability of model outcomes. This paper
proposes a generative neural network architecture - the parameter encoder
neural network (PENN) - capable of estimating local posterior distributions for
the parameters of a regression model. The parameters fully explain predictions
in terms of the inputs and permit visualization, interpretation and inference
in the presence of complex heterogeneous effects and feature dependencies. The
use of Bayesian inference techniques offers an intuitive mechanism to
regularize local parameter estimates towards a stable solution, and to reduce
noise-fitting in settings of limited data availability. The proposed neural
network is particularly well-suited to applications in economics and finance,
where parameter inference plays an important role. An application to an asset
pricing problem demonstrates how the PENN can be used to explore nonlinear risk
dynamics in financial markets, and to compare empirical nonlinear effects to
behavior posited by financial theory.
Related papers
- Conditional Forecasting of Margin Calls using Dynamic Graph Neural Networks [0.0]
We introduce a novel Dynamic Graph Neural Network architecture for solving conditional $m$-steps ahead forecasting problems in temporal financial networks.
Our work shows that the network dynamics can be successfully incorporated into stress-testing practices, thus providing regulators and policymakers with a crucial tool for systemic risk monitoring.
arXiv Detail & Related papers (2024-10-30T17:55:41Z) - Mapping back and forth between model predictive control and neural networks [0.0]
Model predictive control (MPC) for linear systems with quadratic costs and linear constraints is shown to admit an exact representation as an implicit neural network.
A method to "unravel" the implicit neural network of MPC into an explicit one is also introduced.
arXiv Detail & Related papers (2024-04-18T09:29:08Z) - Tractable Function-Space Variational Inference in Bayesian Neural
Networks [72.97620734290139]
A popular approach for estimating the predictive uncertainty of neural networks is to define a prior distribution over the network parameters.
We propose a scalable function-space variational inference method that allows incorporating prior information.
We show that the proposed method leads to state-of-the-art uncertainty estimation and predictive performance on a range of prediction tasks.
arXiv Detail & Related papers (2023-12-28T18:33:26Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - Variational Inference for Bayesian Neural Networks under Model and
Parameter Uncertainty [12.211659310564425]
We apply the concept of model uncertainty as a framework for structural learning in BNNs.
We suggest an adaptation of a scalable variational inference approach with reparametrization of marginal inclusion probabilities.
arXiv Detail & Related papers (2023-05-01T16:38:17Z) - Learning Low Dimensional State Spaces with Overparameterized Recurrent
Neural Nets [57.06026574261203]
We provide theoretical evidence for learning low-dimensional state spaces, which can also model long-term memory.
Experiments corroborate our theory, demonstrating extrapolation via learning low-dimensional state spaces with both linear and non-linear RNNs.
arXiv Detail & Related papers (2022-10-25T14:45:15Z) - On Parametric Optimal Execution and Machine Learning Surrogates [3.077531983369872]
We investigate optimal order execution problems in discrete time with instantaneous price impact and resilience.
We develop a numerical algorithm based on dynamic programming and deep learning.
arXiv Detail & Related papers (2022-04-18T22:40:14Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - A Free Lunch with Influence Functions? Improving Neural Network
Estimates with Concepts from Semiparametric Statistics [41.99023989695363]
We explore the potential for semiparametric theory to be used to improve neural networks and machine learning algorithms.
We propose a new neural network method MultiNet, which seeks the flexibility and diversity of an ensemble using a single architecture.
arXiv Detail & Related papers (2022-02-18T09:35:51Z) - FF-NSL: Feed-Forward Neural-Symbolic Learner [70.978007919101]
This paper introduces a neural-symbolic learning framework, called Feed-Forward Neural-Symbolic Learner (FF-NSL)
FF-NSL integrates state-of-the-art ILP systems based on the Answer Set semantics, with neural networks, in order to learn interpretable hypotheses from labelled unstructured data.
arXiv Detail & Related papers (2021-06-24T15:38:34Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.