Mapping back and forth between model predictive control and neural networks
- URL: http://arxiv.org/abs/2404.12030v1
- Date: Thu, 18 Apr 2024 09:29:08 GMT
- Title: Mapping back and forth between model predictive control and neural networks
- Authors: Ross Drummond, Pablo R Baldivieso-Monasterios, Giorgio Valmorbida,
- Abstract summary: Model predictive control (MPC) for linear systems with quadratic costs and linear constraints is shown to admit an exact representation as an implicit neural network.
A method to "unravel" the implicit neural network of MPC into an explicit one is also introduced.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Model predictive control (MPC) for linear systems with quadratic costs and linear constraints is shown to admit an exact representation as an implicit neural network. A method to "unravel" the implicit neural network of MPC into an explicit one is also introduced. As well as building links between model-based and data-driven control, these results emphasize the capability of implicit neural networks for representing solutions of optimisation problems, as such problems are themselves implicitly defined functions.
Related papers
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
We introduce a novel method for manipulating Feature Visualization (FV) without significantly impacting the model's decision-making process.
We evaluate the effectiveness of our method on several neural network models and demonstrate its capabilities to hide the functionality of arbitrarily chosen neurons.
arXiv Detail & Related papers (2024-01-11T18:57:17Z) - Instance-wise Linearization of Neural Network for Model Interpretation [13.583425552511704]
The challenge can dive into the non-linear behavior of the neural network.
For a neural network model, the non-linear behavior is often caused by non-linear activation units of a model.
We propose an instance-wise linearization approach to reformulates the forward computation process of a neural network prediction.
arXiv Detail & Related papers (2023-10-25T02:07:39Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Predicting Dynamics of Transmon Qubit-Cavity Systems with Recurrent
Neural Networks [0.0]
Current models based on solutions to master equations are not sufficient in capturing the non-Markovian dynamics at play.
We present a method of overcoming this by using a recurrent neural network to obtain effective solutions to the Lindblad master equation for a coupled transmon qubit-cavity system.
arXiv Detail & Related papers (2021-09-29T15:02:23Z) - Generating Probabilistic Safety Guarantees for Neural Network
Controllers [30.34898838361206]
We use a dynamics model to determine the output properties that must hold for a neural network controller to operate safely.
We develop an adaptive verification approach to efficiently generate an overapproximation of the neural network policy.
We show that our method is able to generate meaningful probabilistic safety guarantees for aircraft collision avoidance neural networks.
arXiv Detail & Related papers (2021-03-01T18:48:21Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - On Training and Evaluation of Neural Network Approaches for Model
Predictive Control [9.8918553325509]
This paper is a framework for training and evaluation of Model Predictive Control (MPC) implemented using constrained neural networks.
The motivation is to replace real-time optimization in safety critical feedback control systems with learnt mappings in the form of neural networks with optimization layers.
arXiv Detail & Related papers (2020-05-08T15:37:55Z) - Linearly Constrained Neural Networks [0.5735035463793007]
We present a novel approach to modelling and learning vector fields from physical systems using neural networks.
To achieve this, the target function is modelled as a linear transformation of an underlying potential field, which is in turn modelled by a neural network.
arXiv Detail & Related papers (2020-02-05T01:27:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.