Conditional Forecasting of Margin Calls using Dynamic Graph Neural Networks
- URL: http://arxiv.org/abs/2410.23275v1
- Date: Wed, 30 Oct 2024 17:55:41 GMT
- Title: Conditional Forecasting of Margin Calls using Dynamic Graph Neural Networks
- Authors: Matteo Citterio, Marco D'Errico, Gabriele Visentin,
- Abstract summary: We introduce a novel Dynamic Graph Neural Network architecture for solving conditional $m$-steps ahead forecasting problems in temporal financial networks.
Our work shows that the network dynamics can be successfully incorporated into stress-testing practices, thus providing regulators and policymakers with a crucial tool for systemic risk monitoring.
- Score: 0.0
- License:
- Abstract: We introduce a novel Dynamic Graph Neural Network (DGNN) architecture for solving conditional $m$-steps ahead forecasting problems in temporal financial networks. The proposed DGNN is validated on simulated data from a temporal financial network model capturing stylized features of Interest Rate Swaps (IRSs) transaction networks, where financial entities trade swap contracts dynamically and the network topology evolves conditionally on a reference rate. The proposed model is able to produce accurate conditional forecasts of net variation margins up to a $21$-day horizon by leveraging conditional information under pre-determined stress test scenarios. Our work shows that the network dynamics can be successfully incorporated into stress-testing practices, thus providing regulators and policymakers with a crucial tool for systemic risk monitoring.
Related papers
- Dynamic graph neural networks for enhanced volatility prediction in financial markets [0.0]
This paper proposes a novel approach using Graph Neural Networks (GNNs) to represent global financial markets as dynamic graphs.
By utilizing correlation-based and volatility indices, the Temporal GAT constructs directed graphs that enhance the accuracy of volatility predictions.
arXiv Detail & Related papers (2024-10-22T09:52:15Z) - GARCH-Informed Neural Networks for Volatility Prediction in Financial Markets [0.0]
We present a new, hybrid Deep Learning model that captures and forecasting market volatility more accurately than either class of models are capable of on their own.
When compared to other time series models, GINN showed superior out-of-sample prediction performance in terms of the Coefficient of Determination ($R2$), Mean Squared Error (MSE), and Mean Absolute Error (MAE)
arXiv Detail & Related papers (2024-09-30T23:53:54Z) - Uncertainty in Graph Neural Networks: A Survey [50.63474656037679]
Graph Neural Networks (GNNs) have been extensively used in various real-world applications.
However, the predictive uncertainty of GNNs stemming from diverse sources can lead to unstable and erroneous predictions.
This survey aims to provide a comprehensive overview of the GNNs from the perspective of uncertainty.
arXiv Detail & Related papers (2024-03-11T21:54:52Z) - Comprehensive Analysis of Network Robustness Evaluation Based on Convolutional Neural Networks with Spatial Pyramid Pooling [4.366824280429597]
Connectivity robustness, a crucial aspect for understanding, optimizing, and repairing complex networks, has traditionally been evaluated through simulations.
We address these challenges by designing a convolutional neural networks (CNN) model with spatial pyramid pooling networks (SPP-net)
We show that the proposed CNN model consistently achieves accurate evaluations of both attack curves and robustness values across all removal scenarios.
arXiv Detail & Related papers (2023-08-10T09:54:22Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - Leveraging a Probabilistic PCA Model to Understand the Multivariate
Statistical Network Monitoring Framework for Network Security Anomaly
Detection [64.1680666036655]
We revisit anomaly detection techniques based on PCA from a probabilistic generative model point of view.
We have evaluated the mathematical model using two different datasets.
arXiv Detail & Related papers (2023-02-02T13:41:18Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Bilinear Input Normalization for Neural Networks in Financial
Forecasting [101.89872650510074]
We propose a novel data-driven normalization method for deep neural networks that handle high-frequency financial time-series.
The proposed normalization scheme takes into account the bimodal characteristic of financial time-series.
Our experiments, conducted with state-of-the-arts neural networks and high-frequency data, show significant improvements over other normalization techniques.
arXiv Detail & Related papers (2021-09-01T07:52:03Z) - An Interpretable Neural Network for Parameter Inference [0.0]
This paper proposes a generative neural network architecture capable of estimating local posterior distributions for the parameters of a regression model.
The parameters fully explain predictions in terms of the inputs and permit visualization, interpretation and inference in the presence of complex heterogeneous effects and feature dependencies.
The proposed neural network is particularly well-suited to applications in economics and finance, where parameter inference plays an important role.
arXiv Detail & Related papers (2021-06-10T06:56:01Z) - Stochastic Graph Neural Networks [123.39024384275054]
Graph neural networks (GNNs) model nonlinear representations in graph data with applications in distributed agent coordination, control, and planning.
Current GNN architectures assume ideal scenarios and ignore link fluctuations that occur due to environment, human factors, or external attacks.
In these situations, the GNN fails to address its distributed task if the topological randomness is not considered accordingly.
arXiv Detail & Related papers (2020-06-04T08:00:00Z) - Linking Bank Clients using Graph Neural Networks Powered by Rich
Transactional Data [2.1169216065483996]
We propose a new graph neural network model, which uses not only the topological structure of the network but rich time-series data available for the graph nodes and edges.
The proposed model outperforms the existing approaches, with a significant gap in ROC AUC score on link prediction problem and also allows to improve the quality of credit scoring.
arXiv Detail & Related papers (2020-01-23T10:02:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.