論文の概要: Front Contribution instead of Back Propagation
- arxiv url: http://arxiv.org/abs/2106.05569v1
- Date: Thu, 10 Jun 2021 07:47:53 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-11 14:05:14.532111
- Title: Front Contribution instead of Back Propagation
- Title(参考訳): バックプロパゲーションの代わりにフロントコントリビューション
- Authors: Swaroop Mishra, Anjana Arunkumar
- Abstract要約: エラーバックプロパゲーション(BP)は、メモリ使用量と速度において重要かつ未解決のボトルネックである。
本稿では,BPのコンパクトな代替として,シンプルで斬新なFront-Contributionアルゴリズムを提案する。
近年提案されているBP近似アルゴリズムとは対照的に,提案アルゴリズムはBPと全く同じ出力を生成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Learning's outstanding track record across several domains has stemmed
from the use of error backpropagation (BP). Several studies, however, have
shown that it is impossible to execute BP in a real brain. Also, BP still
serves as an important and unsolved bottleneck for memory usage and speed. We
propose a simple, novel algorithm, the Front-Contribution algorithm, as a
compact alternative to BP. The contributions of all weights with respect to the
final layer weights are calculated before training commences and all the
contributions are appended to weights of the final layer, i.e., the effective
final layer weights are a non-linear function of themselves. Our algorithm then
essentially collapses the network, precluding the necessity for weight updation
of all weights not in the final layer. This reduction in parameters results in
lower memory usage and higher training speed. We show that our algorithm
produces the exact same output as BP, in contrast to several recently proposed
algorithms approximating BP. Our preliminary experiments demonstrate the
efficacy of the proposed algorithm. Our work provides a foundation to
effectively utilize these presently under-explored "front contributions", and
serves to inspire the next generation of training algorithms.
- Abstract(参考訳): Deep Learningのいくつかのドメインにわたる卓越したトラックレコードは、エラーバックプロパゲーション(BP)の使用に起因している。
しかし、いくつかの研究により、実際の脳でBPを実行することは不可能であることが示されている。
また、BPは依然としてメモリ使用量と速度の重要かつ未解決のボトルネックとして機能している。
本稿では,BPのコンパクトな代替として,シンプルで斬新なFront-Contributionアルゴリズムを提案する。
最終層重みに関する全ての重みの寄与は、トレーニング開始前に計算され、全ての寄与は最終層の重みに付加される。
このアルゴリズムはネットワークを本質的に崩壊させ、最終層ではなく全重みの重み上げの必要性を予知する。
このパラメータの削減により、メモリ使用量が減少し、トレーニング速度が向上する。
近年提案されているBP近似アルゴリズムとは対照的に,提案アルゴリズムはBPと全く同じ出力を生成する。
予備実験では,提案アルゴリズムの有効性を実証した。
私たちの研究は、現在未調査の"事前貢献"を効果的に活用するための基盤を提供し、次世代のトレーニングアルゴリズムを刺激するのに役立ちます。
関連論文リスト
- Unrolled denoising networks provably learn optimal Bayesian inference [54.79172096306631]
我々は、近似メッセージパッシング(AMP)のアンロールに基づくニューラルネットワークの最初の厳密な学習保証を証明した。
圧縮センシングでは、製品から引き出されたデータに基づいてトレーニングを行うと、ネットワークの層がベイズAMPで使用されるのと同じデノイザーに収束することを示す。
論文 参考訳(メタデータ) (2024-09-19T17:56:16Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
本稿では,ニューラルネットワークのための新しい学習フレームワークであるCascaded Forward(CaFo)アルゴリズムを提案する。
FFとは異なり、我々のフレームワークは各カスケードブロックのラベル分布を直接出力する。
我々のフレームワークでは、各ブロックは独立して訓練できるので、並列加速度システムに容易に展開できる。
論文 参考訳(メタデータ) (2023-03-17T02:01:11Z) - Unsupervised Learning of Initialization in Deep Neural Networks via
Maximum Mean Discrepancy [74.34895342081407]
本稿では,入力データに対する優れた初期化を求めるための教師なしアルゴリズムを提案する。
まず、パラメータ空間における各パラメータ構成が、d-way分類の特定の下流タスクに対応することに気付く。
次に、学習の成功は、初期パラメータの近傍で下流タスクがいかに多様であるかに直接関連していると推測する。
論文 参考訳(メタデータ) (2023-02-08T23:23:28Z) - Towards Scaling Difference Target Propagation by Learning Backprop
Targets [64.90165892557776]
Different Target Propagationは,Gauss-Newton(GN)最適化と密接な関係を持つ生物学的に証明可能な学習アルゴリズムである。
本稿では、DTPがBPを近似し、階層的なフィードバックウェイトトレーニングを復元できる新しいフィードバックウェイトトレーニング手法を提案する。
CIFAR-10 と ImageNet 上で DTP が達成した最高の性能について報告する。
論文 参考訳(メタデータ) (2022-01-31T18:20:43Z) - Deep learning via message passing algorithms based on belief propagation [2.931240348160871]
本稿では,局所的なエントロピー分布に偏りを持つ強化場を有するBPベースのメッセージパッシングアルゴリズムのファミリについて述べる。
これらのアルゴリズムは、SGDにインスパイアされたソリューションに匹敵するパフォーマンスで、離散重みとアクティベーションを持つ多層ニューラルネットワークをトレーニングすることができる。
論文 参考訳(メタデータ) (2021-10-27T16:52:26Z) - COPS: Controlled Pruning Before Training Starts [68.8204255655161]
最先端のディープニューラルネットワーク(DNN)プルーニング技術は、トレーニング開始前にワンショットで適用され、プルーニングスコアと呼ばれる単一の基準の助けを借りてスパースアーキテクチャを評価する。
この作業では、単一プルーニング基準に集中するのではなく、任意のGASを組み合わせてより強力なプルーニング戦略を構築するためのフレームワークを提供します。
論文 参考訳(メタデータ) (2021-07-27T08:48:01Z) - Predictive Coding Can Do Exact Backpropagation on Convolutional and
Recurrent Neural Networks [40.51949948934705]
予測符号化ネットワーク(PCN)は、脳内の情報処理に影響を及ぼすモデルである。
BPは現代の機械学習において最も成功した学習方法と考えられている。
生物学的に妥当なアルゴリズムは複雑なアーキテクチャ上でBPの精度を正確に再現できることを示す。
論文 参考訳(メタデータ) (2021-03-05T14:57:01Z) - A Theoretical Framework for Target Propagation [75.52598682467817]
我々は、バックプロパゲーション(BP)の代替として人気があるが、まだ完全には理解されていないターゲット伝搬(TP)を解析する。
提案理論は,TPがガウス・ニュートン最適化と密接に関係していることを示し,BPとは大きく異なる。
我々は,フィードバックウェイトトレーニングを改善する新しいリコンストラクション損失を通じて,この問題に対する第1の解決策を提供する。
論文 参考訳(メタデータ) (2020-06-25T12:07:06Z) - Scalable Plug-and-Play ADMM with Convergence Guarantees [24.957046830965822]
広範に使われている変種を漸進的に提案する。
ADMMアルゴリズムにより、大規模データセットにスケーラブルになる。
理論的には,集合的明示的な仮定の下で収束アルゴリズムを解析する。
論文 参考訳(メタデータ) (2020-06-05T04:10:15Z) - Improving the Backpropagation Algorithm with Consequentialism Weight
Updates over Mini-Batches [0.40611352512781856]
適応フィルタのスタックとして多層ニューラルネットワークを考えることが可能であることを示す。
我々は,BPで発生した行動の悪影響を予測し,その発生前にも予測し,よりよいアルゴリズムを導入する。
我々の実験は、ディープニューラルネットワークのトレーニングにおけるアルゴリズムの有用性を示す。
論文 参考訳(メタデータ) (2020-03-11T08:45:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。