論文の概要: Date Estimation in the Wild of Scanned Historical Photos: An Image
Retrieval Approach
- arxiv url: http://arxiv.org/abs/2106.05618v1
- Date: Thu, 10 Jun 2021 09:53:03 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-12 15:16:12.390380
- Title: Date Estimation in the Wild of Scanned Historical Photos: An Image
Retrieval Approach
- Title(参考訳): スキャンされた歴史的写真の野生における日時推定:画像検索によるアプローチ
- Authors: Adri\`a Molina and Pau Riba and Lluis Gomez and Oriol Ramos-Terrades
and Josep Llad\'os
- Abstract要約: 本稿では,史料からの古写真年代推定手法を提案する。
主な貢献は、検索タスクとして日付推定を定式化することであり、クエリが与えられた場合、検索した画像は推定日付類似度でランク付けされる。
我々は,日時推定と日時感応画像検索の2つのタスクにおいて,提案手法の性能を実験的に評価した。
- 参考スコア(独自算出の注目度): 3.5698678013121334
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper presents a novel method for date estimation of historical
photographs from archival sources. The main contribution is to formulate the
date estimation as a retrieval task, where given a query, the retrieved images
are ranked in terms of the estimated date similarity. The closer are their
embedded representations the closer are their dates. Contrary to the
traditional models that design a neural network that learns a classifier or a
regressor, we propose a learning objective based on the nDCG ranking metric. We
have experimentally evaluated the performance of the method in two different
tasks: date estimation and date-sensitive image retrieval, using the DEW public
database, overcoming the baseline methods.
- Abstract(参考訳): 本稿では,史料からの古写真年代推定手法を提案する。
主な貢献は、検索タスクとして日付推定を定式化することであり、クエリが与えられた場合、検索した画像は推定日付類似度でランク付けされる。
それらの埋め込み表現が近いほど、その日付が近い。
分類器や回帰器を学習するニューラルネットワークを設計する従来のモデルとは対照的に,nDCGランキング尺度に基づく学習目標を提案する。
我々は,dew公開データベースを用いた日付推定と日付センシティブ画像検索の2つのタスクにおいて,ベースライン手法を克服した手法の性能を実験的に評価した。
関連論文リスト
- Blind Dates: Examining the Expression of Temporality in Historical
Photographs [57.07335632641355]
マルチモーダル言語とビジョンモデルであるCLIPのオープンソース実装であるOpenCLIPを用いて、画像の日付を調査する。
我々は1950年から1999年までの39,866枚のグレースケールの歴史的プレス写真を含むtextitDe Boer Scene Detectionデータセットを使用している。
解析の結果、バス、車、猫、犬、そして人々が写っている画像はより正確に年代付けされており、時間的マーカーの存在が示唆されている。
論文 参考訳(メタデータ) (2023-10-10T13:51:24Z) - Exploring the Limits of Historical Information for Temporal Knowledge
Graph Extrapolation [59.417443739208146]
本稿では,歴史的コントラスト学習の新しい学習枠組みに基づくイベント予測モデルを提案する。
CENETは、最も潜在的なエンティティを識別するために、歴史的および非歴史的依存関係の両方を学ぶ。
提案したモデルを5つのベンチマークグラフで評価する。
論文 参考訳(メタデータ) (2023-08-29T03:26:38Z) - Pattern Spotting and Image Retrieval in Historical Documents using Deep
Hashing [60.67014034968582]
本稿では,歴史文書のデジタルコレクションにおける画像検索とパターンスポッティングのためのディープラーニング手法を提案する。
ディープラーニングモデルは、実数値またはバイナリコード表現を提供する2つの異なるバリエーションを考慮して、特徴抽出に使用される。
また,提案手法により検索時間を最大200倍に短縮し,関連する作業と比較してストレージコストを最大6,000倍に削減する。
論文 参考訳(メタデータ) (2022-08-04T01:39:37Z) - A Generic Image Retrieval Method for Date Estimation of Historical
Document Collections [0.4588028371034407]
本稿では,異種コレクションの前方でよく一般化する検索手法に基づく頑健な日付推定システムを提案する。
我々は、スムーズなnDCGというランキング損失関数を用いて、各問題の文書の順序を学習する畳み込みニューラルネットワークを訓練する。
論文 参考訳(メタデータ) (2022-04-08T12:30:39Z) - Fusing Local Similarities for Retrieval-based 3D Orientation Estimation
of Unseen Objects [70.49392581592089]
我々は,モノクロ画像から未確認物体の3次元配向を推定する作業に取り組む。
我々は検索ベースの戦略に従い、ネットワークがオブジェクト固有の特徴を学習するのを防ぐ。
また,LineMOD,LineMOD-Occluded,T-LESSのデータセットを用いた実験により,本手法が従来の手法よりもはるかに優れた一般化をもたらすことが示された。
論文 参考訳(メタデータ) (2022-03-16T08:53:00Z) - Contextual Similarity Aggregation with Self-attention for Visual
Re-ranking [96.55393026011811]
本稿では,自己注意を伴う文脈的類似性集約による視覚的再ランク付け手法を提案する。
提案手法の汎用性と有効性を示すため,4つのベンチマークデータセットの総合的な実験を行った。
論文 参考訳(メタデータ) (2021-10-26T06:20:31Z) - Visual Time Series Forecasting: An Image-driven Approach [15.98940788318796]
入力データを画像としてキャプチャし、モデルを訓練してその後の画像を生成する。
このアプローチは、ポイントワイズ値とは対照的に分布を予測する。
実験の結果,我々の予測ツールは循環データには有効であるが,株価などの不規則データには有効ではないことがわかった。
論文 参考訳(メタデータ) (2021-07-02T20:59:48Z) - Monocular Depth Estimation via Listwise Ranking using the Plackett-Luce
Model [15.472533971305367]
多くの実世界のアプリケーションでは、画像内の物体の相対的な深さがシーン理解に不可欠である。
近年のアプローチでは, この問題を回帰課題として扱うことにより, 単眼画像の深度予測の問題に対処している。
しかし、ランク付け手法は回帰の自然な代替として自らを示唆しており、実際、ペア比較を利用したランク付け手法はこの問題に対して有望な性能を示している。
論文 参考訳(メタデータ) (2020-10-25T13:40:10Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
新しいクラスのモデルをトレーニングするために、ラベル付きサンプルの限られた数だけを効果的に活用するための画像分類が提案されている。
本研究では,領域比較ネットワーク (RCN) と呼ばれる距離学習に基づく手法を提案する。
また,タスクのレベルからカテゴリへの解釈可能性の一般化も提案する。
論文 参考訳(メタデータ) (2020-09-08T07:29:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。