論文の概要: Exploring the Limits of Historical Information for Temporal Knowledge
Graph Extrapolation
- arxiv url: http://arxiv.org/abs/2308.15002v1
- Date: Tue, 29 Aug 2023 03:26:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-30 16:00:57.767907
- Title: Exploring the Limits of Historical Information for Temporal Knowledge
Graph Extrapolation
- Title(参考訳): 時間知識グラフ外挿における履歴情報の限界の検討
- Authors: Yi Xu, Junjie Ou, Hui Xu, Luoyi Fu, Lei Zhou, Xinbing Wang, Chenghu
Zhou
- Abstract要約: 本稿では,歴史的コントラスト学習の新しい学習枠組みに基づくイベント予測モデルを提案する。
CENETは、最も潜在的なエンティティを識別するために、歴史的および非歴史的依存関係の両方を学ぶ。
提案したモデルを5つのベンチマークグラフで評価する。
- 参考スコア(独自算出の注目度): 59.417443739208146
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Temporal knowledge graphs, representing the dynamic relationships and
interactions between entities over time, have been identified as a promising
approach for event forecasting. However, a limitation of most temporal
knowledge graph reasoning methods is their heavy reliance on the recurrence or
periodicity of events, which brings challenges to inferring future events
related to entities that lack historical interaction. In fact, the current
state of affairs is often the result of a combination of historical information
and underlying factors that are not directly observable. To this end, we
investigate the limits of historical information for temporal knowledge graph
extrapolation and propose a new event forecasting model called Contrastive
Event Network (CENET) based on a novel training framework of historical
contrastive learning. CENET learns both the historical and non-historical
dependency to distinguish the most potential entities that best match the given
query. Simultaneously, by launching contrastive learning, it trains
representations of queries to probe whether the current moment is more
dependent on historical or non-historical events. These representations further
help train a binary classifier, whose output is a boolean mask, indicating the
related entities in the search space. During the inference process, CENET
employs a mask-based strategy to generate the final results. We evaluate our
proposed model on five benchmark graphs. The results demonstrate that CENET
significantly outperforms all existing methods in most metrics, achieving at
least 8.3% relative improvement of Hits@1 over previous state-of-the-art
baselines on event-based datasets.
- Abstract(参考訳): 時間経過に伴うエンティティ間の動的関係と相互作用を表す時間的知識グラフは、イベント予測に有望なアプローチとして認識されている。
しかしながら、ほとんどの時間的知識グラフ推論手法の制限は、出来事の再発や周期性に大きく依存しているため、歴史的相互作用を欠いたエンティティに関する将来の出来事を推測する上での課題となる。
実際、現在の状況は、しばしば、直接観測できない歴史的情報と基礎となる要因の組み合わせの結果である。
そこで本研究では,時間的知識グラフの補間のための履歴情報の限界を調査し,新しい学習枠組みに基づくコントラストイベントネットワーク(cenet)と呼ばれるイベント予測モデルを提案する。
CENETは、歴史的および非歴史的依存関係の両方を学び、与えられたクエリに最もマッチする最も潜在的なエンティティを識別する。
同時に、コントラスト学習を開始することで、クエリの表現を訓練し、現在のモーメントが歴史的事象や非歴史的事象に依存するかどうかを調べる。
これらの表現はさらに、出力がブールマスクであるバイナリ分類器を訓練し、検索空間内の関連エンティティを示すのに役立つ。
推論プロセスの間、cenetは最終的な結果を生成するためにマスクベースの戦略を用いる。
提案モデルを5つのベンチマークグラフで評価した。
その結果、CENETは、ほとんどのメトリクスにおいて既存のすべてのメソッドを著しく上回り、イベントベースのデータセットにおける過去の最先端ベースラインよりも少なくとも8.3%のHits@1の改善を実現している。
関連論文リスト
- DPCL-Diff: The Temporal Knowledge Graph Reasoning based on Graph Node Diffusion Model with Dual-Domain Periodic Contrastive Learning [3.645855411897217]
二重領域周期性学習(DPCL-Diff)を用いたグラフノード拡散モデルを提案する。
GNDiffはノイズを疎結合なイベントに導入し、新しいイベントをシミュレートする。
DPCL-Diffは周期事象と非周期事象をポアンカー空間とユークリッド空間にマッピングし、それらの特徴を利用して類似の周期事象を効果的に区別する。
論文 参考訳(メタデータ) (2024-11-03T08:30:29Z) - AMCEN: An Attention Masking-based Contrastive Event Network for Two-stage Temporal Knowledge Graph Reasoning [29.68279984719722]
時間的知識グラフ(TKG)は、現実世界の知識の進化する性質を効果的にモデル化することができ、その完全性と拡張は、既存の知識から新しい事象を推論することで達成できる。
しかし、推論精度はデータセットにおける新しいイベントと繰り返されるイベントの間に不均衡があるため、悪影響を及ぼす。
本研究では,今後の事象の2段階予測のために,局所的な時間的パターンを持つ注意マスキングに基づくコントラストイベントネットワーク(AMCEN)を提案する。
論文 参考訳(メタデータ) (2024-05-16T01:39:50Z) - HIP Network: Historical Information Passing Network for Extrapolation
Reasoning on Temporal Knowledge Graph [14.832067253514213]
今後の出来事を予測するために,歴史情報伝達(HIP)ネットワークを提案する。
本手法では,関係表現の更新を考慮し,上記の次元に対応する3つのスコアリング関数を採用する。
5つのベンチマークデータセットの実験結果は、HIPネットワークの優位性を示している。
論文 参考訳(メタデータ) (2024-02-19T11:50:30Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphsは階層的時間グラフとして動的相互作用を特徴付ける新しいアプローチである。
提案手法は,コンパクトなグラフベース表現を用いて相互作用をモデル化し,多種多様な時間スケールでの適応推論を可能にする。
我々は,サッカーシミュレータ,抵抗ゲーム,MOMA人間活動データセットなど,複雑でダイナミックなエージェントインタラクションを持つ複数のデータセット上でTimeGraphsを評価する。
論文 参考訳(メタデータ) (2024-01-06T06:26:49Z) - Local-Global History-aware Contrastive Learning for Temporal Knowledge
Graph Reasoning [25.497749629866757]
時間的知識グラフのためのブルーローカル・ブルーグロバル履歴対応ブルーコントラストブルーLモデル(ブルーLogCL)を提案する。
最初の課題として、LogCLは、ローカルおよびグローバルな歴史的事実エンコーダに適用されるエンティティ対応の注意機構を提案する。
後者の問題のために、LogCLは4つの歴史的クエリコントラストパターンを設計し、モデルの堅牢性を効果的に改善した。
論文 参考訳(メタデータ) (2023-12-04T03:27:01Z) - Temporal Knowledge Graph Reasoning with Historical Contrastive Learning [24.492458924487863]
我々はContrastive Event Network(CENET)と呼ばれる新しいイベント予測モデルを提案する。
CENETは、ヒストリと非ヒストリの両方の依存関係を学び、与えられたクエリに最もよくマッチする最も潜在的なエンティティを識別する。
推論プロセスの間、CENETは最終的な結果を生成するためにマスクベースの戦略を採用している。
論文 参考訳(メタデータ) (2022-11-20T08:32:59Z) - CEP3: Community Event Prediction with Neural Point Process on Graph [59.434777403325604]
グラフニューラルネットワークとマーク付き時間点プロセス(MTPP)を組み合わせた新しいモデルを提案する。
実験では,モデルの精度と訓練効率の両面から,モデルの優れた性能を実証した。
論文 参考訳(メタデータ) (2022-05-21T15:30:25Z) - A Closer Look at Debiased Temporal Sentence Grounding in Videos:
Dataset, Metric, and Approach [53.727460222955266]
テンポラル・センテンス・グラウンディング・イン・ビデオ(TSGV)は、未編集のビデオに自然言語文を埋め込むことを目的としている。
最近の研究では、現在のベンチマークデータセットには明らかなモーメントアノテーションバイアスがあることが判明している。
偏りのあるデータセットによる膨らませ評価を緩和するため、基礎的リコールスコアを割引する新しい評価基準「dR@n,IoU@m」を導入する。
論文 参考訳(メタデータ) (2022-03-10T08:58:18Z) - Networked Time Series Prediction with Incomplete Data [59.45358694862176]
我々は、歴史と未来の両方で欠落した値を持つ不完全なデータでトレーニングできる新しいディープラーニングフレームワークであるNetS-ImpGANを提案する。
3つの実世界のデータセットに対して、異なるパターンと欠落率で広範な実験を行う。
論文 参考訳(メタデータ) (2021-10-05T18:20:42Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
イベントデータセットは、タイムライン上で不規則に発生するさまざまなタイプのイベントのシーケンスである。
基礎となる強度関数を推定するために,非パラメトリックディープニューラルネットワーク手法を提案する。
論文 参考訳(メタデータ) (2020-02-21T23:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。