論文の概要: MolGrow: A Graph Normalizing Flow for Hierarchical Molecular Generation
- arxiv url: http://arxiv.org/abs/2106.05856v1
- Date: Wed, 3 Feb 2021 17:48:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-12 22:05:41.546879
- Title: MolGrow: A Graph Normalizing Flow for Hierarchical Molecular Generation
- Title(参考訳): MolGrow: 階層的分子生成のためのグラフ正規化フロー
- Authors: Maksim Kuznetsov, Daniil Polykovskiy
- Abstract要約: 分子グラフを生成するための階層的正規化フローモデルを提案する。
このモデルは、全てのノードを2つに分割することで、単一ノードグラフから新しい分子構造を生成する。
我々は, 潜在符号を用いた化学特性のグローバルかつ制約付き最適化実験を成功させた。
- 参考スコア(独自算出の注目度): 9.594432031144716
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a hierarchical normalizing flow model for generating molecular
graphs. The model produces new molecular structures from a single-node graph by
recursively splitting every node into two. All operations are invertible and
can be used as plug-and-play modules. The hierarchical nature of the latent
codes allows for precise changes in the resulting graph: perturbations in the
top layer cause global structural changes, while perturbations in the
consequent layers change the resulting molecule marginally. The proposed model
outperforms existing generative graph models on the distribution learning task.
We also show successful experiments on global and constrained optimization of
chemical properties using latent codes of the model.
- Abstract(参考訳): 分子グラフを生成するための階層的正規化フローモデルを提案する。
このモデルは、各ノードを2つに再帰的に分割することで、単一ノードグラフから新しい分子構造を生成する。
すべての操作は可逆であり、プラグアンドプレイモジュールとして使用できる。
潜在コードの階層的性質は、結果のグラフの正確な変化を可能にする: 上層での摂動は、大域的な構造変化を引き起こすが、連続層の摂動は、結果の分子をわずかに変化させる。
提案モデルは,分布学習タスクにおいて既存の生成グラフモデルよりも優れている。
また,このモデルの潜在符号を用いた化学特性のグローバルおよび制約付き最適化実験を成功させた。
関連論文リスト
- IFH: a Diffusion Framework for Flexible Design of Graph Generative Models [53.219279193440734]
グラフ生成モデルは,1行にグラフを生成するワンショットモデルと,ノードとエッジの連続的な付加によるグラフを生成するシーケンシャルモデルという,2つの顕著なファミリーに分類される。
本稿では,逐次度を規定するグラフ生成モデルであるInsert-Fill-Halt(IFH)を提案する。
論文 参考訳(メタデータ) (2024-08-23T16:24:40Z) - Graph Generation via Spectral Diffusion [51.60814773299899]
本稿では,1)グラフラプラシア行列のスペクトル分解と2)拡散過程に基づく新しいグラフ生成モデルGRASPを提案する。
具体的には、固有ベクトルと固有値のサンプリングにデノナイジングモデルを用い、グラフラプラシアン行列と隣接行列を再構成する。
我々の置換不変モデルは各ノードの固有ベクトルに連結することでノードの特徴を扱える。
論文 参考訳(メタデータ) (2024-02-29T09:26:46Z) - MolHF: A Hierarchical Normalizing Flow for Molecular Graph Generation [4.517805235253331]
MolHFは分子グラフを粗い方法で生成する新しい階層型フローベースモデルである。
MolHFは100以上の重原子を持つより大きな分子(ポリマー)をモデル化するための最初のフローベースモデルである。
論文 参考訳(メタデータ) (2023-05-15T08:59:35Z) - Graph Generation with Diffusion Mixture [57.78958552860948]
グラフの生成は、非ユークリッド構造の複雑な性質を理解する必要がある実世界のタスクにとって大きな課題である。
本稿では,拡散過程の最終グラフ構造を明示的に学習することにより,グラフのトポロジーをモデル化する生成フレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-07T17:07:46Z) - Conditional Diffusion Based on Discrete Graph Structures for Molecular
Graph Generation [32.66694406638287]
分子グラフ生成のための離散グラフ構造(CDGS)に基づく条件拡散モデルを提案する。
具体的には、微分方程式(SDE)を用いて、グラフ構造と固有の特徴の両方に対して前方グラフ拡散過程を構築する。
本稿では,中間グラフ状態からグローバルコンテキストと局所ノードエッジ依存性を抽出する,特殊なハイブリッドグラフノイズ予測モデルを提案する。
論文 参考訳(メタデータ) (2023-01-01T15:24:15Z) - DiGress: Discrete Denoising diffusion for graph generation [79.13904438217592]
DiGressは、分類ノードとエッジ属性を持つグラフを生成するための離散化拡散モデルである。
分子と非分子のデータセットで最先端のパフォーマンスを実現し、最大3倍の妥当性が向上する。
また、1.3Mの薬物様分子を含む大規模なGuacaMolデータセットにスケールする最初のモデルでもある。
論文 参考訳(メタデータ) (2022-09-29T12:55:03Z) - Graph Polynomial Convolution Models for Node Classification of
Non-Homophilous Graphs [52.52570805621925]
本研究では,高階グラフ畳み込みからの効率的な学習と,ノード分類のための隣接行列から直接学習する。
得られたモデルが新しいグラフと残留スケーリングパラメータをもたらすことを示す。
提案手法は,非親和性パラメータのノード分類における精度の向上を実証する。
論文 参考訳(メタデータ) (2022-09-12T04:46:55Z) - GraphPiece: Efficiently Generating High-Quality Molecular Graph with
Substructures [7.021635649909492]
分子グラフからエムグラフと呼ばれる共通部分構造を自動的に発見する手法を提案する。
グラフの断片に基づいて,変分オートエンコーダを用いて2つの相の分子を生成する。
論文 参考訳(メタデータ) (2021-06-29T05:26:18Z) - A Graph VAE and Graph Transformer Approach to Generating Molecular
Graphs [1.6631602844999724]
グラフ畳み込み層とグラフプーリング層をフル活用した変分オートエンコーダとトランスベースモデルを提案する。
トランスモデルは新しいノードエンコーディング層を実装し、一般的にトランスフォーマーで使用される位置エンコーディングを置き換え、グラフ上で動く位置情報を持たないトランスフォーマーを生成する。
実験では、生成ノードとエッジの両方の重要性を考慮して、分子生成のベンチマークタスクを選択しました。
論文 参考訳(メタデータ) (2021-04-09T13:13:06Z) - Molecular graph generation with Graph Neural Networks [2.7393821783237184]
MG2N2と呼ばれる一連のグラフニューラルネットワークモジュールに基づくシーケンシャルな分子グラフジェネレーターを紹介します。
我々のモデルは、過度に適合することなく、トレーニング段階で見られる分子パターンを一般化することができる。
論文 参考訳(メタデータ) (2020-12-14T10:32:57Z) - Conditional Constrained Graph Variational Autoencoders for Molecule
Design [70.59828655929194]
本稿では、このキーイデアを最先端のモデルで実装した、条件制約付きグラフ変分オートエンコーダ(CCGVAE)を提案する。
分子生成のために広く採用されている2つのデータセットについて、いくつかの評価指標について改善した結果を示す。
論文 参考訳(メタデータ) (2020-09-01T21:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。