論文の概要: DMIDAS: Deep Mixed Data Sampling Regression for Long Multi-Horizon Time
Series Forecasting
- arxiv url: http://arxiv.org/abs/2106.05860v1
- Date: Mon, 7 Jun 2021 22:36:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-13 05:48:16.280010
- Title: DMIDAS: Deep Mixed Data Sampling Regression for Long Multi-Horizon Time
Series Forecasting
- Title(参考訳): DMIDAS:長期マルチ水平時系列予測のための深層混合データサンプリング回帰
- Authors: Cristian Challu, Kin G. Olivares, Gus Welter, Artur Dubrawski
- Abstract要約: 本研究では,高周波医療と電力価格データを用いた長期エネルギー価格の予測手法を開発した。
我々は,最先端モデルの予測精度を5%向上し,NBEATSのパラメータ数を約70%削減した。
- 参考スコア(独自算出の注目度): 13.458489651961106
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural forecasting has shown significant improvements in the accuracy of
large-scale systems, yet predicting extremely long horizons remains a
challenging task. Two common problems are the volatility of the predictions and
their computational complexity; we addressed them by incorporating smoothness
regularization and mixed data sampling techniques to a well-performing
multi-layer perceptron based architecture (NBEATS). We validate our proposed
method, DMIDAS, on high-frequency healthcare and electricity price data with
long forecasting horizons (~1000 timestamps) where we improve the prediction
accuracy by 5% over state-of-the-art models, reducing the number of parameters
of NBEATS by nearly 70%.
- Abstract(参考訳): ニューラル予測は大規模システムの精度を大幅に向上させたが、非常に長い水平線を予測することは難しい課題である。
2つの一般的な問題は予測のボラティリティと計算複雑性であり、スムーズな正規化と混合データサンプリング技術を多層パーセプトロンアーキテクチャ(NBEATS)に組み込むことで対処する。
提案手法であるDMIDASを,長期間の予測地平線(約1000タイムスタンプ)を有する高周波医療・電気価格データ上で検証し,その予測精度を最先端モデルに比べて5%向上させ,NBEATSのパラメータ数を約70%削減する。
関連論文リスト
- An Investigation on Machine Learning Predictive Accuracy Improvement and Uncertainty Reduction using VAE-based Data Augmentation [2.517043342442487]
深層生成学習は、特定のMLモデルを使用して、既存のデータの基盤となる分布を学習し、実際のデータに似た合成サンプルを生成する。
本研究では,変分オートエンコーダ(VAE)を用いた深部生成モデルを用いて,データ拡張の有効性を評価することを目的とする。
本研究では,拡張データを用いてトレーニングしたディープニューラルネットワーク(DNN)モデルの予測において,データ拡張が精度の向上につながるかどうかを検討した。
論文 参考訳(メタデータ) (2024-10-24T18:15:48Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
本稿では,大規模事前学習モデルを用いて,サンプル難易度を考慮したエントロピー正規化による下流モデルトレーニングを指導する。
我々は、挑戦的なベンチマークで精度と不確実性の校正を同時に改善する。
論文 参考訳(メタデータ) (2023-04-20T07:29:23Z) - cs-net: structural approach to time-series forecasting for
high-dimensional feature space data with limited observations [1.5533753199073637]
本研究では,高次元多変量予測タスクに優れたフレキシブルなデータ特徴抽出手法を提案する。
我々のアプローチは、もともとNational Science Foundation (NSF) Algorithms for Threat Detection (ATD) 2022 Challengeのために開発された。
我々のモデルは、GDELTデータセットでトレーニングされ、ATDスプリントシリーズの第1位と第2位に終わり、時系列予測のための他のデータセットを約束します。
論文 参考訳(メタデータ) (2022-12-05T19:46:47Z) - Beyond S-curves: Recurrent Neural Networks for Technology Forecasting [60.82125150951035]
我々は機械学習と時系列予測の最近の進歩を生かしたオートコーダアプローチを開発した。
S曲線予測は、単純なARIMAベースラインに匹敵する平均パーセンテージ誤差(MAPE)を示す。
我々のオートエンコーダアプローチは、2番目に高い結果に対して平均13.5%改善する。
論文 参考訳(メタデータ) (2022-11-28T14:16:22Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
本稿では,Dilated Causal Convolutionsに基づくDeepVolモデルを提案する。
実験結果から,提案手法は高頻度データからグローバルな特徴を効果的に学習できることが示唆された。
論文 参考訳(メタデータ) (2022-09-23T16:13:47Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
確率的自己回帰ニューラルネットワーク(PARNN)について紹介する。
PARNNは、非定常性、非線形性、非調和性、長距離依存、カオスパターンを示す複雑な時系列データを扱うことができる。
本研究では,Transformers,NBeats,DeepARなどの標準統計モデル,機械学習モデル,ディープラーニングモデルに対して,PARNNの性能を評価する。
論文 参考訳(メタデータ) (2022-04-01T17:57:36Z) - N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting [17.53378788483556]
長期的な予測に苦しむ2つの一般的な課題は、予測のボラティリティとその計算複雑性である。
N-HiTSは,新しい階層型データサンプリング手法とマルチレートデータサンプリング手法を導入することで,両課題に対処するモデルである。
我々は,N-HiTSの最先端長軸予測法に対する利点を実証的に評価する。
論文 参考訳(メタデータ) (2022-01-30T17:52:19Z) - A Statistics and Deep Learning Hybrid Method for Multivariate Time
Series Forecasting and Mortality Modeling [0.0]
Exponential Smoothing Recurrent Neural Network (ES-RNN)は、統計予測モデルとリカレントニューラルネットワークのハイブリッドである。
ES-RNNはMakridakis-4 Forecasting Competitionで絶対誤差を9.4%改善した。
論文 参考訳(メタデータ) (2021-12-16T04:44:19Z) - Low-Rank Temporal Attention-Augmented Bilinear Network for financial
time-series forecasting [93.73198973454944]
ディープラーニングモデルは、金融時系列データの予測問題など、さまざまな領域から来る多くの問題において、大幅なパフォーマンス改善をもたらしている。
近年,制限順序書の時系列予測の効率的かつ高性能なモデルとして,時間的注意強化バイリニアネットワークが提案されている。
本稿では,モデルの低ランクテンソル近似を提案し,トレーニング可能なパラメータの数をさらに削減し,その速度を向上する。
論文 参考訳(メタデータ) (2021-07-05T10:15:23Z) - Transformer Hawkes Process [79.16290557505211]
本稿では,長期的依存関係を捕捉する自己認識機構を利用したTransformer Hawkes Process (THP) モデルを提案する。
THPは、有意なマージンによる可能性と事象予測の精度の両方の観点から、既存のモデルより優れている。
本稿では、THPが関係情報を組み込む際に、複数の点過程を学習する際の予測性能の改善を実現する具体例を示す。
論文 参考訳(メタデータ) (2020-02-21T13:48:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。