論文の概要: Curiously Effective Features for Image Quality Prediction
- arxiv url: http://arxiv.org/abs/2106.05946v1
- Date: Thu, 10 Jun 2021 17:44:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-11 14:19:00.932321
- Title: Curiously Effective Features for Image Quality Prediction
- Title(参考訳): 画像品質予測における極めて効果的な特徴
- Authors: S\"oren Becker, Thomas Wiegand, Sebastian Bosse
- Abstract要約: 特徴抽出器の品質に加えて,その量も重要な役割を担っていることを示す。
この興味深い結果を分析し,特徴抽出器の品質に加えて,その量も重要な役割を担っていることを示す。
- 参考スコア(独自算出の注目度): 8.55016170630223
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The performance of visual quality prediction models is commonly assumed to be
closely tied to their ability to capture perceptually relevant image aspects.
Models are thus either based on sophisticated feature extractors carefully
designed from extensive domain knowledge or optimized through feature learning.
In contrast to this, we find feature extractors constructed from random noise
to be sufficient to learn a linear regression model whose quality predictions
reach high correlations with human visual quality ratings, on par with a model
with learned features. We analyze this curious result and show that besides the
quality of feature extractors also their quantity plays a crucial role - with
top performances only being achieved in highly overparameterized models.
- Abstract(参考訳): 視覚品質予測モデルの性能は、知覚的に関連する画像の側面を捉える能力と密接に関連していると一般的に考えられている。
したがってモデルは、広範囲にわたるドメイン知識から慎重に設計された洗練された特徴抽出器に基づくか、あるいは機能学習を通じて最適化される。
これとは対照的に、ランダムノイズから構成された特徴抽出器は、人間の視覚的品質評価と高い相関性を持つ線形回帰モデルを学ぶのに十分である。
この興味深い結果を分析して,特徴抽出器の品質に加えて,その量が重要な役割を担っていることを示した。
関連論文リスト
- Opinion-Unaware Blind Image Quality Assessment using Multi-Scale Deep Feature Statistics [54.08757792080732]
我々は,事前学習された視覚モデルからの深い特徴を統計的解析モデルと統合して,意見認識のないBIQA(OU-BIQA)を実現することを提案する。
提案モデルは,最先端のBIQAモデルと比較して,人間の視覚的知覚との整合性に優れる。
論文 参考訳(メタデータ) (2024-05-29T06:09:34Z) - The Importance of Model Inspection for Better Understanding Performance Characteristics of Graph Neural Networks [15.569758991934934]
脳形状分類タスクに適用したグラフニューラルネットワークの特徴学習特性に対するモデル選択の影響について検討する。
モデルの異なるレイヤに機能の埋め込みを組み込むことで、かなりの違いが見つかります。
論文 参考訳(メタデータ) (2024-05-02T13:26:18Z) - Attribute-Aware Deep Hashing with Self-Consistency for Large-Scale
Fine-Grained Image Retrieval [65.43522019468976]
本稿では属性認識ハッシュコードを生成するための自己整合性を持つ属性認識ハッシュネットワークを提案する。
本研究では,高レベル属性固有ベクトルを教師なしで蒸留する再構成タスクのエンコーダ・デコーダ構造ネットワークを開発する。
我々のモデルは,これらの属性ベクトルに特徴デコリレーション制約を設けて,それらの代表的能力を強化する。
論文 参考訳(メタデータ) (2023-11-21T08:20:38Z) - Study of Distractors in Neural Models of Code [4.043200001974071]
ニューラルネットワークの予測に寄与する重要な特徴を見つけることは、説明可能なAIの研究の活発な領域である。
本研究では,その予測に対するモデルの信頼度に影響を与えることによって,予測に疑問を呈する特徴について考察する。
さまざまなタスク、モデル、コードのデータセットにわたる実験により、トークンの削除が予測におけるモデルの信頼性に大きな影響を与えることが判明した。
論文 参考訳(メタデータ) (2023-03-03T06:54:01Z) - DeepDC: Deep Distance Correlation as a Perceptual Image Quality
Evaluator [53.57431705309919]
ImageNet Pre-trained Deep Neural Network (DNN)は、効果的な画像品質評価(IQA)モデルを構築するための顕著な転送性を示す。
我々は,事前学習DNN機能のみに基づく新しいフル参照IQA(FR-IQA)モデルを開発した。
5つの標準IQAデータセット上で,提案した品質モデルの優位性を示すため,包括的実験を行った。
論文 参考訳(メタデータ) (2022-11-09T14:57:27Z) - FUNQUE: Fusion of Unified Quality Evaluators [42.41484412777326]
核融合による品質評価は、高性能な品質モデルを開発するための強力な方法として登場した。
統一品質評価器を融合した品質モデルであるFUNQUEを提案する。
論文 参考訳(メタデータ) (2022-02-23T00:21:43Z) - A Relational Model for One-Shot Classification [80.77724423309184]
インダクティブバイアスを組み込んだディープラーニングモデルは,広範なデータ拡張に頼ることなく,サンプル効率のよい学習にメリットをもたらすことを示す。
提案するワンショット分類モデルは,一対の入力を局所的および対的注意の形で関係マッチングする。
論文 参考訳(メタデータ) (2021-11-08T07:53:12Z) - Enhancing Model Robustness and Fairness with Causality: A Regularization
Approach [15.981724441808147]
最近の研究は、機械学習モデルにおける急激な相関と意図しないバイアスのリスクを懸念している。
モデルトレーニング中に因果知識を統合するためのシンプルで直感的な正規化手法を提案する。
因果的特徴に依存し、因果的でない特徴に依存しない予測モデルを構築します。
論文 参考訳(メタデータ) (2021-10-03T02:49:33Z) - What Image Features Boost Housing Market Predictions? [81.32205133298254]
本稿では,予測アルゴリズムにおける効率的な数値包摂のための視覚特徴抽出手法を提案する。
本稿では,シャノンのエントロピー,重心計算,画像分割,畳み込みニューラルネットワークなどの手法について論じる。
ここで選択された40の画像特徴のセットは、かなりの量の予測能力を持ち、最も強力なメタデータ予測器よりも優れています。
論文 参考訳(メタデータ) (2021-07-15T06:32:10Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
同様の性能を実現するモデルセットに対して,予測公正性を特徴付けるフレームワークを開発する。
到達可能なグループレベルの予測格差の範囲を計算するためのトラクタブルアルゴリズムを提供します。
選択ラベル付きデータの実証的な課題に対処するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2021-01-02T02:11:37Z) - Better Model Selection with a new Definition of Feature Importance [8.914907178577476]
特徴の重要性は、各入力特徴がモデル予測にとってどれほど重要かを測定することを目的としている。
本稿では,モデル選択のための新しいツリーモデル説明手法を提案する。
論文 参考訳(メタデータ) (2020-09-16T14:32:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。