論文の概要: Better Model Selection with a new Definition of Feature Importance
- arxiv url: http://arxiv.org/abs/2009.07708v1
- Date: Wed, 16 Sep 2020 14:32:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-17 23:09:07.657309
- Title: Better Model Selection with a new Definition of Feature Importance
- Title(参考訳): 特徴の新たな定義によるより良いモデル選択
- Authors: Fan Fang, Carmine Ventre, Lingbo Li, Leslie Kanthan, Fan Wu, Michail
Basios
- Abstract要約: 特徴の重要性は、各入力特徴がモデル予測にとってどれほど重要かを測定することを目的としている。
本稿では,モデル選択のための新しいツリーモデル説明手法を提案する。
- 参考スコア(独自算出の注目度): 8.914907178577476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Feature importance aims at measuring how crucial each input feature is for
model prediction. It is widely used in feature engineering, model selection and
explainable artificial intelligence (XAI). In this paper, we propose a new
tree-model explanation approach for model selection. Our novel concept
leverages the Coefficient of Variation of a feature weight (measured in terms
of the contribution of the feature to the prediction) to capture the dispersion
of importance over samples. Extensive experimental results show that our novel
feature explanation performs better than general cross validation method in
model selection both in terms of time efficiency and accuracy performance.
- Abstract(参考訳): 特徴の重要性は、各入力特徴がモデル予測にとってどれほど重要かを測定することである。
特徴工学、モデル選択、説明可能な人工知能(XAI)で広く使われている。
本稿では,モデル選択のための新しいツリーモデル説明手法を提案する。
提案する新しい概念は, 特徴量の変動係数(特徴量の予測への寄与の観点から測る)を利用して, 試料よりも重要度の分散を捉える。
広範な実験結果から,本手法は時間効率と精度の両面で,モデル選択における一般的なクロス検証法よりも優れた性能を示す。
関連論文リスト
- REFRESH: Responsible and Efficient Feature Reselection Guided by SHAP Values [17.489279048199304]
REFRESHは、いくつかの新しいモデルをトレーニングすることなく、モデルパフォーマンスに望ましい追加の制約を達成できるように、機能を再選択する手法である。
REFRESHの基盤となるアルゴリズムは、SHAP値と相関解析を用いて、モデルをトレーニングすることなくモデルの予測を近似できる新しい手法である。
論文 参考訳(メタデータ) (2024-03-13T18:06:43Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
本稿では,Long Short-Term Memory Networkに埋め込まれた特徴選択手法を提案する。
本手法はLSTMの重みと偏りを分割的に最適化する。
イタリアとスペイン南東部の大気質時系列データの実験的評価により,従来のLSTMの能力一般化が著しく向上することが確認された。
論文 参考訳(メタデータ) (2023-12-29T08:42:10Z) - Causal Feature Selection via Transfer Entropy [59.999594949050596]
因果発見は、観察データによる特徴間の因果関係を特定することを目的としている。
本稿では,前向きと後向きの機能選択に依存する新たな因果的特徴選択手法を提案する。
精度および有限サンプルの場合の回帰誤差と分類誤差について理論的に保証する。
論文 参考訳(メタデータ) (2023-10-17T08:04:45Z) - Rationalizing Predictions by Adversarial Information Calibration [65.19407304154177]
我々は2つのモデルを共同で訓練する: 1つは、正確だがブラックボックスな方法でタスクを解く典型的なニューラルモデルであり、もう1つは、予測の理論的根拠を付加するセレクタ・予測モデルである。
我々は,2つのモデルから抽出した情報を,それらの違いが欠落した特徴や過度に選択された特徴の指標であるように校正するために,敵対的手法を用いる。
論文 参考訳(メタデータ) (2023-01-15T03:13:09Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
AIP(Attribute-Informed Perturbation)の提案により,生データインスタンスの反事実を生成するフレームワークを設計する。
異なる属性を条件とした生成モデルを利用することで、所望のラベルとの反事実を効果的かつ効率的に得ることができる。
実世界のテキストや画像に対する実験結果から, 設計したフレームワークの有効性, サンプル品質, および効率が示された。
論文 参考訳(メタデータ) (2021-01-18T08:37:13Z) - Learning from the Best: Rationalizing Prediction by Adversarial
Information Calibration [39.685626118667074]
2つのモデルを共同でトレーニングする。1つは手前のタスクを正確だがブラックボックスな方法で解く典型的なニューラルモデルであり、もう1つはセレクタ-予測モデルであり、予測の根拠も生み出す。
両モデルから抽出した情報の校正には,逆数に基づく手法を用いる。
自然言語タスクには, 言語モデルに基づく正規化子を用いて, 流線型論理の抽出を促進することを提案する。
論文 参考訳(メタデータ) (2020-12-16T11:54:15Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
視覚的MBRLアルゴリズムにおける予測モデルの設計決定について検討する。
潜在空間の使用など、しばしば重要と見なされる設計上の決定は、タスクのパフォーマンスにはほとんど影響しないことが分かりました。
我々は,この現象が探索とどのように関係しているか,および標準ベンチマークにおける下位スコーリングモデルのいくつかが,同じトレーニングデータでトレーニングされた場合のベストパフォーマンスモデルと同等の性能を発揮するかを示す。
論文 参考訳(メタデータ) (2020-12-08T18:03:21Z) - PSD2 Explainable AI Model for Credit Scoring [0.0]
本研究の目的は、信用リスクモデルの予測精度を向上させるための高度な分析手法の開発と試験である。
このプロジェクトは、銀行関連のデータベースに説明可能な機械学習モデルを適用することに焦点を当てている。
論文 参考訳(メタデータ) (2020-11-20T12:12:38Z) - Leveraging Model Inherent Variable Importance for Stable Online Feature
Selection [16.396739487911056]
本稿では,オンライン機能選択のための新しいフレームワークFIRESを紹介する。
私たちのフレームワークは、基盤となるモデルの選択をユーザに委ねるという点で一般的です。
実験の結果,提案フレームワークは特徴選択安定性の点で明らかに優れていることがわかった。
論文 参考訳(メタデータ) (2020-06-18T10:01:18Z) - Adversarial Infidelity Learning for Model Interpretation [43.37354056251584]
本稿では,モデル解釈のためのモデル非依存能率直接(MEED)FSフレームワークを提案する。
我々のフレームワークは、正当性、ショートカット、モデルの識別可能性、情報伝達に関する懸念を緩和する。
我々のAILメカニズムは、選択した特徴と目標の間の条件分布を学習するのに役立ちます。
論文 参考訳(メタデータ) (2020-06-09T16:27:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。