Quantum versus Population Dynamics over Cayley Graphs
- URL: http://arxiv.org/abs/2211.06928v1
- Date: Sun, 13 Nov 2022 15:28:20 GMT
- Title: Quantum versus Population Dynamics over Cayley Graphs
- Authors: Emil Prodan
- Abstract summary: We show that a specific decoration of the original graph enables an exact mapping between the models of population and quantum dynamics.
As such, population dynamics over graphs is yet another classical platform that can simulate quantum effects.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Consider a graph whose vertices are populated by identical objects, together
with an algorithm for the time-evolution of the number of objects placed at
each of the vertices. The discrete dynamics of these objects can be observed
and studied using simple and inexpensive laboratory settings. There are many
similarities but also many differences between such population dynamics and the
quantum dynamics of a particle hopping on the same graph. In this work, we show
that a specific decoration of the original graph enables an exact mapping
between the models of population and quantum dynamics. As such, population
dynamics over graphs is yet another classical platform that can simulate
quantum effects. Several examples are used to demonstrate this claim.
Related papers
- Unifying quantum spatial search, state transfer and uniform sampling on graphs: simple and exact [2.871419116565751]
This article presents a novel and succinct algorithmic framework via alternating quantum walks.
It unifies quantum spatial search, state transfer and uniform sampling on a large class of graphs.
The approach is easy to use since it has a succinct formalism that depends only on the depth of the Laplacian eigenvalue set of the graph.
arXiv Detail & Related papers (2024-07-01T06:09:19Z) - Probing Graph Representations [77.7361299039905]
We use a probing framework to quantify the amount of meaningful information captured in graph representations.
Our findings on molecular datasets show the potential of probing for understanding the inductive biases of graph-based models.
We advocate for probing as a useful diagnostic tool for evaluating graph-based models.
arXiv Detail & Related papers (2023-03-07T14:58:18Z) - Unveiling the Sampling Density in Non-Uniform Geometric Graphs [69.93864101024639]
We consider graphs as geometric graphs: nodes are randomly sampled from an underlying metric space, and any pair of nodes is connected if their distance is less than a specified neighborhood radius.
In a social network communities can be modeled as densely sampled areas, and hubs as nodes with larger neighborhood radius.
We develop methods to estimate the unknown sampling density in a self-supervised fashion.
arXiv Detail & Related papers (2022-10-15T08:01:08Z) - Similarity-aware Positive Instance Sampling for Graph Contrastive
Pre-training [82.68805025636165]
We propose to select positive graph instances directly from existing graphs in the training set.
Our selection is based on certain domain-specific pair-wise similarity measurements.
Besides, we develop an adaptive node-level pre-training method to dynamically mask nodes to distribute them evenly in the graph.
arXiv Detail & Related papers (2022-06-23T20:12:51Z) - Key graph properties affecting transport efficiency of flip-flop Grover
percolated quantum walks [0.0]
We study quantum walks with the flip-flop shift operator and the Grover coin.
We show how the position of the source and sink together with the graph geometry and its modifications affect transport.
This gives us a deep insight into processes where elongation or addition of dead-end subgraphs may surprisingly result in enhanced transport.
arXiv Detail & Related papers (2022-02-19T11:55:21Z) - Application of graph theory in quantum computer science [0.0]
We demonstrate that the continuous-time quantum walk models remain powerful for nontrivial graph structures.
The quantum spatial search defined through CTQW has been proven to work well on various undirected graphs.
In the scope of this aspect we analyze, whether quantum speed-up is observed for complicated graph structures as well.
arXiv Detail & Related papers (2021-09-27T12:07:25Z) - JKOnet: Proximal Optimal Transport Modeling of Population Dynamics [69.89192135800143]
We propose a neural architecture that combines an energy model on measures, with (small) optimal displacements solved with input convex neural networks (ICNN)
We demonstrate the applicability of our model to explain and predict population dynamics.
arXiv Detail & Related papers (2021-06-11T12:30:43Z) - Simplifying Continuous-Time Quantum Walks on Dynamic Graphs [0.0]
A continuous-time quantum walk on a dynamic graph evolves by Schr"odinger's equation with a sequence of Hamiltonians encoding the edges of the graph.
In this paper, we give six scenarios under which a dynamic graph can be simplified.
arXiv Detail & Related papers (2021-06-10T19:24:32Z) - Hawkes Processes on Graphons [85.6759041284472]
We study Hawkes processes and their variants that are associated with Granger causality graphs.
We can generate the corresponding Hawkes processes and simulate event sequences.
We learn the proposed model by minimizing the hierarchical optimal transport distance between the generated event sequences and the observed ones.
arXiv Detail & Related papers (2021-02-04T17:09:50Z) - Continuous-time quantum walks in the presence of a quadratic
perturbation [55.41644538483948]
We address the properties of continuous-time quantum walks with Hamiltonians of the form $mathcalH= L + lambda L2$.
We consider cycle, complete, and star graphs because paradigmatic models with low/high connectivity and/or symmetry.
arXiv Detail & Related papers (2020-05-13T14:53:36Z) - Growing Random Graphs with Quantum Rules [0.0]
We propose two variations of a model to grow random graphs and trees based on continuous-time quantum walks on the graphs.
We investigate several rates of this spontaneous collapse for an individual quantum walker and for two non-interacting walkers.
arXiv Detail & Related papers (2020-04-03T01:51:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.