論文の概要: Automatic Risk Adaptation in Distributional Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2106.06317v1
- Date: Fri, 11 Jun 2021 11:31:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-14 14:09:34.177149
- Title: Automatic Risk Adaptation in Distributional Reinforcement Learning
- Title(参考訳): 分布強化学習におけるリスク自動適応
- Authors: Frederik Schubert, Theresa Eimer, Bodo Rosenhahn, Marius Lindauer
- Abstract要約: 実践的応用における強化学習(RL)エージェントの使用は、最適以下の結果を考慮する必要がある。
これは特に安全クリティカルな環境において重要であり、エラーは高いコストや損害をもたらす可能性がある。
リスク認識エージェントとリスク認識エージェントの両方と比較して, 失敗率を最大7倍に低下させ, 一般化性能を最大14%向上させた。
- 参考スコア(独自算出の注目度): 26.113528145137497
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of Reinforcement Learning (RL) agents in practical applications
requires the consideration of suboptimal outcomes, depending on the familiarity
of the agent with its environment. This is especially important in
safety-critical environments, where errors can lead to high costs or damage. In
distributional RL, the risk-sensitivity can be controlled via different
distortion measures of the estimated return distribution. However, these
distortion functions require an estimate of the risk level, which is difficult
to obtain and depends on the current state. In this work, we demonstrate the
suboptimality of a static risk level estimation and propose a method to
dynamically select risk levels at each environment step. Our method ARA
(Automatic Risk Adaptation) estimates the appropriate risk level in both known
and unknown environments using a Random Network Distillation error. We show
reduced failure rates by up to a factor of 7 and improved generalization
performance by up to 14% compared to both risk-aware and risk-agnostic agents
in several locomotion environments.
- Abstract(参考訳): 実運用における強化学習(rl)エージェントの使用には,エージェントとその環境の親しみによる最適化結果の考慮が必要である。
これは特に、エラーが高いコストや損害につながる可能性がある安全クリティカルな環境で重要である。
分布RLでは、推定した戻り分布の歪み測定によってリスク感度を制御できる。
しかし、これらの歪み関数にはリスクレベルの推定が必要であり、これは取得が難しく、現在の状態に依存する。
本研究では,静的リスクレベル推定の最適性を示し,各環境ステップにおけるリスクレベルを動的に選択する手法を提案する。
本手法は,ランダムネットワーク蒸留誤差を用いて,未知環境と未知環境の両方において適切なリスクレベルを推定する。
いくつかの移動環境において, リスク認識エージェントとリスク認識エージェントの両方と比較して, 失敗率を最大7倍に低下させ, 一般化性能を最大14%向上させた。
関連論文リスト
- Data-Adaptive Tradeoffs among Multiple Risks in Distribution-Free Prediction [55.77015419028725]
しきい値とトレードオフパラメータが適応的に選択された場合、リスクの有効な制御を可能にする手法を開発する。
提案手法は単調なリスクとほぼ単調なリスクをサポートするが,それ以外は分布的な仮定はしない。
論文 参考訳(メタデータ) (2024-03-28T17:28:06Z) - RiskQ: Risk-sensitive Multi-Agent Reinforcement Learning Value Factorization [49.26510528455664]
本稿では,リスクに敏感な個人・グローバル・マックス(RIGM)の原則を,個人・グローバル・マックス(IGM)と分散IGM(DIGM)の原則の一般化として紹介する。
RiskQは広範な実験によって有望な性能が得られることを示す。
論文 参考訳(メタデータ) (2023-11-03T07:18:36Z) - Distributional Reinforcement Learning with Online Risk-awareness
Adaption [5.363478475460403]
オンラインリスク適応型分散RL(DRL-ORA)を新たに導入する。
DRL-ORAは、オンラインの総変動最小化問題を解くことにより、てんかんのリスクレベルを動的に選択する。
DRL-ORAは、固定リスクレベルまたは手動で決められたリスクレベルに依存する既存の手法よりも優れている、複数のタスクのクラスを示す。
論文 参考訳(メタデータ) (2023-10-08T14:32:23Z) - Extreme Risk Mitigation in Reinforcement Learning using Extreme Value
Theory [10.288413564829579]
リスク認識の重要な側面は、破滅的な結果をもたらす可能性のある非常に稀なリスクイベント(リワード)をモデル化することである。
リスクを意識したRL手法は存在するが、リスク回避のレベルは状態-作用値関数の推定の精度に大きく依存している。
本研究では、状態-作用値関数分布によって予測される極端な値の予測を精査することに着目し、非常に稀で危険な事象に直面した場合のRLエージェントのレジリエンスを高めることを提案する。
論文 参考訳(メタデータ) (2023-08-24T18:23:59Z) - Safe Deployment for Counterfactual Learning to Rank with Exposure-Based
Risk Minimization [63.93275508300137]
本稿では,安全な配置を理論的に保証する新たなリスク認識型対実学習ランク法を提案する。
提案手法の有効性を実験的に検証し,データが少ない場合の動作不良の早期回避に有効であることを示す。
論文 参考訳(メタデータ) (2023-04-26T15:54:23Z) - One Risk to Rule Them All: A Risk-Sensitive Perspective on Model-Based
Offline Reinforcement Learning [25.218430053391884]
両問題に共同で対処するためのメカニズムとしてリスク感受性を提案する。
相対的不確実性へのリスク回避は、環境に悪影響を及ぼす可能性のある行動を妨げる。
実験の結果,提案アルゴリズムは決定論的ベンチマーク上での競合性能を実現することがわかった。
論文 参考訳(メタデータ) (2022-11-30T21:24:11Z) - Efficient Risk-Averse Reinforcement Learning [79.61412643761034]
リスク逆強化学習(RL)では、リターンのリスク測定を最適化することが目標である。
特定の条件下では、これは必然的に局所最適障壁につながることを証明し、それを回避するためのソフトリスク機構を提案する。
迷路ナビゲーション,自律運転,資源配分ベンチマークにおいて,リスク回避の改善を示す。
論文 参考訳(メタデータ) (2022-05-10T19:40:52Z) - Adaptive Risk Tendency: Nano Drone Navigation in Cluttered Environments
with Distributional Reinforcement Learning [17.940958199767234]
適応型リスク傾向ポリシーを学習するための分散強化学習フレームワークを提案する。
本アルゴリズムは,シミュレーションと実世界の実験の両方において,ハエのリスク感度を調整可能であることを示す。
論文 参考訳(メタデータ) (2022-03-28T13:39:58Z) - Addressing Inherent Uncertainty: Risk-Sensitive Behavior Generation for
Automated Driving using Distributional Reinforcement Learning [0.0]
自動運転車におけるリスク感応行動生成のための2段階のアプローチを提案する。
まず, 深層分布強化学習を用いて, 不確実な環境下で最適政策を学習する。
実行中は、確立されたリスク基準を適用して最適なリスク感受性行動を選択する。
論文 参考訳(メタデータ) (2021-02-05T11:45:12Z) - Cautious Adaptation For Reinforcement Learning in Safety-Critical
Settings [129.80279257258098]
都市運転のような現実の安全クリティカルな目標設定における強化学習(RL)は危険である。
非安全クリティカルな「ソース」環境でエージェントが最初に訓練する「安全クリティカル適応」タスクセットを提案する。
多様な環境における事前経験がリスクを見積もるためにエージェントに装備するという直感に基づくソリューションアプローチであるCARLを提案する。
論文 参考訳(メタデータ) (2020-08-15T01:40:59Z) - Learning Bounds for Risk-sensitive Learning [86.50262971918276]
リスクに敏感な学習では、損失のリスク・アバース(またはリスク・シーキング)を最小化する仮説を見つけることを目的としている。
最適化された確実性等価性によって最適性を記述するリスク感応学習スキームの一般化特性について検討する。
論文 参考訳(メタデータ) (2020-06-15T05:25:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。