論文の概要: TOHAN: A One-step Approach towards Few-shot Hypothesis Adaptation
- arxiv url: http://arxiv.org/abs/2106.06326v1
- Date: Fri, 11 Jun 2021 11:46:20 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-14 20:09:44.840896
- Title: TOHAN: A One-step Approach towards Few-shot Hypothesis Adaptation
- Title(参考訳): tohan: マイナショット仮説適応へのワンステップアプローチ
- Authors: Haoang Chi and Feng Liu and Wenjing Yang and Long Lan and Tongliang
Liu and Bo Han and William K. Cheung and James T. Kwok
- Abstract要約: 少数ショットドメイン適応(FDA)では、ターゲットドメインの分類器は、ソースドメイン(SD)内のラベル付きデータとターゲットドメイン(TD)内のラベル付きデータとで訓練される。
データは通常、現在の時代の個人情報(例えば、携帯電話に分散されたデータ)を含んでいる。
本稿では,その問題を解決するために,目標指向仮説適応ネットワーク(TOHAN)を提案する。
- 参考スコア(独自算出の注目度): 73.75784418508033
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In few-shot domain adaptation (FDA), classifiers for the target domain are
trained with accessible labeled data in the source domain (SD) and few labeled
data in the target domain (TD). However, data usually contain private
information in the current era, e.g., data distributed on personal phones.
Thus, the private information will be leaked if we directly access data in SD
to train a target-domain classifier (required by FDA methods). In this paper,
to thoroughly prevent the privacy leakage in SD, we consider a very challenging
problem setting, where the classifier for the TD has to be trained using few
labeled target data and a well-trained SD classifier, named few-shot hypothesis
adaptation (FHA). In FHA, we cannot access data in SD, as a result, the private
information in SD will be protected well. To this end, we propose a target
orientated hypothesis adaptation network (TOHAN) to solve the FHA problem,
where we generate highly-compatible unlabeled data (i.e., an intermediate
domain) to help train a target-domain classifier. TOHAN maintains two deep
networks simultaneously, where one focuses on learning an intermediate domain
and the other takes care of the intermediate-to-target distributional
adaptation and the target-risk minimization. Experimental results show that
TOHAN outperforms competitive baselines significantly.
- Abstract(参考訳): 少数ショットドメイン適応(FDA)では、ターゲットドメインの分類器は、ソースドメイン(SD)内のアクセス可能なラベル付きデータとターゲットドメイン(TD)内のラベル付きデータとで訓練される。
しかし、データは通常、現在の時代のプライベート情報(例えば、携帯電話に分散されたデータ)を含んでいる。
したがって、SD内のデータに直接アクセスしてターゲットドメイン分類器(FDA法で要求される)をトレーニングすれば、プライベート情報が漏洩する。
本稿では、SDのプライバシー漏洩を徹底的に防止するために、TDの分類器を少数のラベル付きターゲットデータとよく訓練されたSD分類器(FHA)を用いて訓練する必要がある、非常に困難な課題について考察する。
FHAでは、SD内のデータにアクセスできないため、SD内の個人情報はよく保護される。
この目的のために、FHA問題を解決するためにターゲット指向仮説適応ネットワーク(TOHAN)を提案し、高い互換性のない未ラベルデータ(中間ドメイン)を生成し、ターゲットドメイン分類器の訓練を支援する。
TOHANは2つの深いネットワークを同時に維持し、一方は中間領域の学習に焦点をあて、もう一方は中間から目標への分布適応と目標リスク最小化の処理を行う。
実験の結果,tohanは競争ベースラインを大きく上回っている。
関連論文リスト
- Privacy Preserving Federated Unsupervised Domain Adaptation with Application to Age Prediction from DNA Methylation Data [2.699900017799093]
高次元設定における教師なしドメイン適応のためのプライバシ保護フレームワークを提案する。
我々のフレームワークは、フェデレートされた環境における高次元ドメイン適応のための最初のプライバシ保護ソリューションである。
論文 参考訳(メタデータ) (2024-11-26T10:19:16Z) - Subject-Based Domain Adaptation for Facial Expression Recognition [51.10374151948157]
ディープラーニングモデルを特定の対象個人に適用することは、難しい表情認識タスクである。
本稿では、FERにおける主観的ドメイン適応のための新しいMSDA手法を提案する。
複数の情報源からの情報を効率的に利用して、ディープFERモデルを単一のターゲット個人に適応させる。
論文 参考訳(メタデータ) (2023-12-09T18:40:37Z) - SIDE: Self-supervised Intermediate Domain Exploration for Source-free
Domain Adaptation [36.470026809824674]
ドメイン適応は、ソースドメインからターゲットドメインに学習した知識を転送する際に、ドメインシフトを軽減することを目的としています。
プライバシの問題により、ソースフリードメイン適応(SFDA)は、最近非常に要求される一方で難しいものになっている。
本稿では、ドメインギャップを効果的に中間ドメインにブリッジする自己教師付き中間ドメイン探索(SIDE)を提案する。
論文 参考訳(メタデータ) (2023-10-13T07:50:37Z) - Source-Free Domain Adaptation for Medical Image Segmentation via
Prototype-Anchored Feature Alignment and Contrastive Learning [57.43322536718131]
医用画像セグメンテーションのための2段階のソースフリードメイン適応(SFDA)フレームワークを提案する。
プロトタイプアンコールされた特徴アライメントの段階では,まず,事前学習した画素ワイド分類器の重みを原プロトタイプとして利用する。
そこで,本研究では,目標となる特徴とクラスプロトタイプとの整合性を期待するコストを最小化し,双方向輸送を導入する。
論文 参考訳(メタデータ) (2023-07-19T06:07:12Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
ドメイン適応は、ラベル付きソースドメインから学んだ知識を、データ分散が異なるラベル付きターゲットドメインに転送することを目的としています。
近年,ソースフリードメイン適応 (Source-Free Domain Adaptation, SFDA) が注目されている。
本研究では,SFDA-DEと呼ばれる新しいフレームワークを提案し,ソース分布推定によるSFDAタスクに対処する。
論文 参考訳(メタデータ) (2022-04-24T12:22:19Z) - Source Data-absent Unsupervised Domain Adaptation through Hypothesis
Transfer and Labeling Transfer [137.36099660616975]
Unsupervised Adapt Adaptation (UDA) は、関連性のある異なるラベル付きソースドメインから新しいラベルなしターゲットドメインへの知識の転送を目標としている。
既存のudaメソッドの多くはソースデータへのアクセスを必要としており、プライバシ上の懸念からデータが機密で共有できない場合は適用できない。
本稿では、ソースデータにアクセスする代わりに、トレーニング済みの分類モデルのみを用いて現実的な設定に取り組むことを目的とする。
論文 参考訳(メタデータ) (2020-12-14T07:28:50Z) - Open-Set Hypothesis Transfer with Semantic Consistency [99.83813484934177]
本稿では,対象データの変換における意味的一貫性に着目した手法を提案する。
本モデルはまず,自信ある予測を発見し,擬似ラベルを用いた分類を行う。
その結果、ラベルなしデータは、ソースクラスまたは未知のクラスに一致した識別クラスに分類される。
論文 参考訳(メタデータ) (2020-10-01T10:44:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。