論文の概要: Privacy Preserving Federated Unsupervised Domain Adaptation with Application to Age Prediction from DNA Methylation Data
- arxiv url: http://arxiv.org/abs/2411.17287v1
- Date: Tue, 26 Nov 2024 10:19:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:34:13.123672
- Title: Privacy Preserving Federated Unsupervised Domain Adaptation with Application to Age Prediction from DNA Methylation Data
- Title(参考訳): フェデレーション付き非教師付きドメイン適応のプライバシ保存とDNAメチル化データからの年齢予測への応用
- Authors: Cem Ata Baykara, Ali Burak Ünal, Nico Pfeifer, Mete Akgün,
- Abstract要約: 高次元設定における教師なしドメイン適応のためのプライバシ保護フレームワークを提案する。
我々のフレームワークは、フェデレートされた環境における高次元ドメイン適応のための最初のプライバシ保護ソリューションである。
- 参考スコア(独自算出の注目度): 2.699900017799093
- License:
- Abstract: In computational biology, predictive models are widely used to address complex tasks, but their performance can suffer greatly when applied to data from different distributions. The current state-of-the-art domain adaptation method for high-dimensional data aims to mitigate these issues by aligning the input dependencies between training and test data. However, this approach requires centralized access to both source and target domain data, raising concerns about data privacy, especially when the data comes from multiple sources. In this paper, we introduce a privacy-preserving federated framework for unsupervised domain adaptation in high-dimensional settings. Our method employs federated training of Gaussian processes and weighted elastic nets to effectively address the problem of distribution shift between domains, while utilizing secure aggregation and randomized encoding to protect the local data of participating data owners. We evaluate our framework on the task of age prediction using DNA methylation data from multiple tissues, demonstrating that our approach performs comparably to existing centralized methods while maintaining data privacy, even in distributed environments where data is spread across multiple institutions. Our framework is the first privacy-preserving solution for high-dimensional domain adaptation in federated environments, offering a promising tool for fields like computational biology and medicine, where protecting sensitive data is essential.
- Abstract(参考訳): 計算生物学では、予測モデルは複雑な問題に対処するために広く使われているが、異なる分布のデータに適用した場合、その性能は著しく低下する可能性がある。
高次元データに対する現在の最先端領域適応法は、トレーニングデータとテストデータ間の入力依存性を整合させることにより、これらの問題を緩和することを目的としている。
しかしこのアプローチでは、ソースデータとターゲットドメインデータの両方に集中的にアクセスする必要がある。
本稿では,高次元設定における教師なしドメイン適応のためのプライバシ保護フェデレーションフレームワークを提案する。
提案手法では,ガウス過程と重み付き弾性ネットの連成トレーニングを用いて,領域間の分散シフトの問題を効果的に解決し,セキュアなアグリゲーションとランダム化符号化を利用して,参加データ所有者のローカルデータを保護する。
我々は,複数の組織からのDNAメチル化データを用いた年齢予測の課題に関する枠組みを評価し,複数の組織に分散した分散環境においても,データのプライバシーを維持しながら,既存の集中型手法と相容れない性能を示す。
我々のフレームワークは、連邦環境における高次元ドメイン適応のための最初のプライバシ保護ソリューションであり、機密データの保護が不可欠である計算生物学や医学などの分野に有望なツールを提供する。
関連論文リスト
- Privacy-preserving datasets by capturing feature distributions with Conditional VAEs [0.11999555634662634]
条件付き変分オートエンコーダ(CVAE)は、大きな事前学習された視覚基盤モデルから抽出された特徴ベクトルに基づいて訓練される。
本手法は, 医用領域と自然画像領域の両方において, 従来のアプローチよりも優れている。
結果は、データスカースおよびプライバシに敏感な環境におけるディープラーニングアプリケーションに大きな影響を与える生成モデルの可能性を強調している。
論文 参考訳(メタデータ) (2024-08-01T15:26:24Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
私たちはaを提案します。
フェデレートされた異常検出フレームワークであるPeFADは、プライバシーの懸念が高まっている。
我々は、4つの実際のデータセットに対して広範な評価を行い、PeFADは既存の最先端ベースラインを最大28.74%上回っている。
論文 参考訳(メタデータ) (2024-06-04T13:51:08Z) - DiffClass: Diffusion-Based Class Incremental Learning [30.514281721324853]
クラスインクリメンタルラーニング(CIL)は破滅的な忘れが原因で困難である。
最近の例のないCIL手法は、過去のタスクデータを合成することによって破滅的な忘れを軽減しようとする。
そこで本研究では,これらの問題を克服するために,新しい非定型CIL法を提案する。
論文 参考訳(メタデータ) (2024-03-08T03:34:18Z) - Subject-Based Domain Adaptation for Facial Expression Recognition [51.10374151948157]
ディープラーニングモデルを特定の対象個人に適用することは、難しい表情認識タスクである。
本稿では、FERにおける主観的ドメイン適応のための新しいMSDA手法を提案する。
複数の情報源からの情報を効率的に利用して、ディープFERモデルを単一のターゲット個人に適応させる。
論文 参考訳(メタデータ) (2023-12-09T18:40:37Z) - Fed-MIWAE: Federated Imputation of Incomplete Data via Deep Generative
Models [5.373862368597948]
フェデレーション学習は、明示的なデータ交換を必要とせずに、複数のローカルデータセット上で機械学習モデルのトレーニングを可能にする。
欠落したデータを扱う戦略を含むデータ前処理は、現実世界のフェデレートされた学習デプロイメントにおいて、依然として大きなボトルネックとなっている。
本稿では,変分オートエンコーダをベースとした遅延変数モデルであるFed-MIWAEを提案する。
論文 参考訳(メタデータ) (2023-04-17T08:14:08Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
セマンティックセグメンテーションのための教師なしのsim-to-realドメイン適応(UDA)は、シミュレーションデータに基づいて訓練されたモデルの実世界のテスト性能を改善することを目的としている。
従来のUDAは、適応のためのトレーニング中に利用可能なラベルのない実世界のサンプルが豊富にあると仮定することが多い。
実世界のデータサンプルが1つしか利用できない,一発の教師なしシム・トゥ・リアル・ドメイン適応(OSUDA)と一般化問題について検討する。
論文 参考訳(メタデータ) (2022-12-14T15:54:15Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Mitigating Data Heterogeneity in Federated Learning with Data
Augmentation [26.226057709504733]
Federated Learning(FL)は、集中型モデルのトレーニングを可能にするフレームワークである。
主な障害の1つは、データ不均一性、すなわち、各クライアントが独立に独立に分散した(非IID)データを持っていることである。
最近の証拠は、データ拡張が同等またはそれ以上のパフォーマンスを誘導できることを示している。
論文 参考訳(メタデータ) (2022-06-20T19:47:43Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Unsupervised Domain Adaptation in Person re-ID via k-Reciprocal
Clustering and Large-Scale Heterogeneous Environment Synthesis [76.46004354572956]
個人再識別のための教師なし領域適応手法を提案する。
実験結果から,ktCUDA法とSHRED法は,再同定性能において,+5.7 mAPの平均的改善を実現することがわかった。
論文 参考訳(メタデータ) (2020-01-14T17:43:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。