Optical dressing of the electronic response of two-dimensional
semiconductors in quantum and classical descriptions of cavity
electrodynamics
- URL: http://arxiv.org/abs/2106.06370v2
- Date: Fri, 10 Dec 2021 13:42:41 GMT
- Title: Optical dressing of the electronic response of two-dimensional
semiconductors in quantum and classical descriptions of cavity
electrodynamics
- Authors: Ivan Amelio, Lukas Korosec, Iacopo Carusotto and Giacomo Mazza
- Abstract summary: We study quantum effects of the vacuum light-matter interaction in materials embedded in optical cavities.
By using a diagrammatic expansion of the electron-photon interaction, we describe signatures of light-matter hybridization.
We show that, despite the strong coupling, quantum corrections are negligibly small and weakly dependent on the cavity confinement.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study quantum effects of the vacuum light-matter interaction in materials
embedded in optical cavities. We focus on the electronic response of a
two-dimensional semiconductor placed inside a planar cavity. By using a
diagrammatic expansion of the electron-photon interaction, we describe
signatures of light-matter hybridization characterized by large asymmetric
shifts of the spectral weight at resonant frequencies. We follow the evolution
of the light-dressing from the cavity to the free-space limit. In the cavity
limit, light-matter hybridization results in a modification of the optical gap
with sizeable spectral weight appearing below the bare gap edge. In the limit
of large cavities, we find a residual redistribution of spectral weight which
becomes independent of the distance between the two mirrors. We show that the
photon dressing of the electronic response can be fully explained by using a
classical description of light. The classical description is found to hold up
to a strong coupling regime of the light-matter interaction highlighted by the
large modification of the photon spectra with respect to the empty cavity. We
show that, despite the strong coupling, quantum corrections are negligibly
small and weakly dependent on the cavity confinement. As a consequence, in
contrast to the optical gap, the single particle electronic band gap is not
sensibly modified by the strong-coupling. Our results show that quantum
corrections are dominated by off-resonant photon modes at high energy. As such,
cavity confinement can hardly be seen as a knob to control the quantum effects
of the light-matter interaction in vacuum.
Related papers
- Band Gap Engineering and Controlling Transport Properties of Single
Photons in Periodic and Disordered Jaynes-Cummings Arrays [0.0]
We study the single photon transport properties in periodic and position-disordered Jaynes-Cummings arrays.
In the disordered case, we find that the single photon transmission curves show the disappearance of band formation.
The results of this work may find application in the study of quantum many-body effects in the optical domain.
arXiv Detail & Related papers (2024-01-26T22:32:21Z) - Resolving Fock states near the Kerr-free point of a superconducting
resonator [51.03394077656548]
We have designed a tunable nonlinear resonator terminated by a SNAIL (Superconducting Asymmetric Inductive eLement)
We have excited photons near this Kerr-free point and characterized the device using a transmon qubit.
arXiv Detail & Related papers (2022-10-18T09:55:58Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Photon generation and entanglement in a double superconducting cavity [105.54048699217668]
We study the dynamical Casimir effect in a double superconducting cavity in a quantum electrodynamics architecture.
We study the creation of photons when the walls oscillate harmonically with a small amplitude.
arXiv Detail & Related papers (2022-07-18T16:43:47Z) - Ponderomotive squeezing of light by a levitated nanoparticle in free
space [0.0]
A mechanically compliant element can be set into motion by the interaction with light.
This light-driven motion can give rise to ponderomotive correlations in the electromagnetic field.
cavities are often employed to enhance these correlations up to the point where they generate quantum squeezing of light.
arXiv Detail & Related papers (2022-02-18T07:57:36Z) - Photoneutralization of charges in GaAs quantum dot based entangled
photon emitters [0.923921787880063]
We show that emission quenching can be actively suppressed by controlling the balance of free electrons and holes in the vicinity of the quantum dot.
Our finding demonstrates that the emission quenching can be actively suppressed by controlling the balance of free electrons and holes in the vicinity of the quantum dot.
arXiv Detail & Related papers (2021-10-05T20:25:52Z) - Optomechanical strong coupling between a single cavity photon and a
single atom [0.0]
Single atoms coupled to a cavity offer unique opportunities as quantum optomechanical devices because of their small mass and strong interaction with light.
We propose an alternative route in such systems, which relies on the coupling of atomic motion to the much narrower cavity-dressed atomic resonance frequency.
We analyze the prominent observable features of this optomechanical strong coupling, which include a per-photon motional heating that is significantly larger than the single-photon recoil energy.
arXiv Detail & Related papers (2021-08-07T21:32:17Z) - Universal pair-polaritons in a strongly interacting Fermi gas [0.0]
We report on experiments using molecular transitions in a strongly interacting Fermi gas, directly coupling cavity photons to pairs of atoms.
The dependence of the pair-polariton spectrum on interatomic interactions is universal, independent of the transition used.
This represents a magnification of many-body effects by two orders of magnitude in energy.
arXiv Detail & Related papers (2021-03-03T15:06:06Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.