Quantum Gaussian process regression
- URL: http://arxiv.org/abs/2106.06701v1
- Date: Sat, 12 Jun 2021 07:03:27 GMT
- Title: Quantum Gaussian process regression
- Authors: Menghan Chen, Gongde Guo, Song Lin and Jing Li
- Abstract summary: The proposed quantum algorithm consists of three sub-algorithms.
One is the first quantum subalgorithm to efficiently generate mean predictor.
The other is to product covariance predictor with same method.
- Score: 3.4501155479285326
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, a quantum algorithm based on gaussian process regression model
is proposed. The proposed quantum algorithm consists of three sub-algorithms.
One is the first quantum subalgorithm to efficiently generate mean predictor.
The improved HHL algorithm is proposed to obtain the sign of outcomes.
Therefore, the terrible situation that results is ambiguous in terms of
original HHL algorithm is avoided, which makes whole algorithm more clear and
exact. The other is to product covariance predictor with same method. Thirdly,
the squared exponential covariance matrices are prepared that annihilation
operator and generation operator are simulated by the unitary linear
decomposition Hamiltonian simulation and kernel function vectors is generated
with blocking coding techniques on covariance matrices. In addition, it is
shown that the proposed quantum gaussian process regression algorithm can
achieve quadratic faster over the classical counterpart.
Related papers
- A quantum algorithm for advection-diffusion equation by a probabilistic imaginary-time evolution operator [0.0]
We propose a quantum algorithm for solving the linear advection-diffusion equation by employing a new approximate probabilistic imaginary-time evolution (PITE) operator.
We construct the explicit quantum circuit for realizing the imaginary-time evolution of the Hamiltonian coming from the advection-diffusion equation.
Our algorithm gives comparable result to the Harrow-Hassidim-Lloyd (HHL) algorithm with similar gate complexity, while we need much less ancillary qubits.
arXiv Detail & Related papers (2024-09-27T08:56:21Z) - Classical simulation of non-Gaussian bosonic circuits [0.4972323953932129]
We propose efficient classical algorithms to simulate bosonic linear optics circuits applied to superpositions of Gaussian states.
We present an exact simulation algorithm whose runtime is in the number of modes and the size of the circuit.
We also present a faster approximate randomized algorithm whose runtime is quadratic in this number.
arXiv Detail & Related papers (2024-03-27T23:52:35Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Classical and Quantum Iterative Optimization Algorithms Based on Matrix
Legendre-Bregman Projections [1.5736899098702972]
We consider Legendre-Bregman projections defined on the Hermitian matrix space and design iterative optimization algorithms based on them.
We study both exact and approximate Bregman projection algorithms.
In particular, our approximate iterative algorithm gives rise to the non-commutative versions of the generalized iterative scaling (GIS) algorithm for maximum entropy inference.
arXiv Detail & Related papers (2022-09-28T15:59:08Z) - Alternatives to a nonhomogeneous partial differential equation quantum
algorithm [52.77024349608834]
We propose a quantum algorithm for solving nonhomogeneous linear partial differential equations of the form $Apsi(textbfr)=f(textbfr)$.
These achievements enable easier experimental implementation of the quantum algorithm based on nowadays technology.
arXiv Detail & Related papers (2022-05-11T14:29:39Z) - Gradient-Free optimization algorithm for single-qubit quantum classifier [0.3314882635954752]
A gradient-free optimization algorithm is proposed to overcome the effects of barren plateau caused by quantum devices.
The proposed algorithm is demonstrated for a classification task and is compared with that using Adam.
The proposed gradient-free optimization algorithm can reach a high accuracy faster than that using Adam.
arXiv Detail & Related papers (2022-05-10T08:45:03Z) - Regret Bounds for Expected Improvement Algorithms in Gaussian Process
Bandit Optimization [63.8557841188626]
The expected improvement (EI) algorithm is one of the most popular strategies for optimization under uncertainty.
We propose a variant of EI with a standard incumbent defined via the GP predictive mean.
We show that our algorithm converges, and achieves a cumulative regret bound of $mathcal O(gamma_TsqrtT)$.
arXiv Detail & Related papers (2022-03-15T13:17:53Z) - Quantum Algorithms for Prediction Based on Ridge Regression [0.7612218105739107]
We propose a quantum algorithm based on ridge regression model, which get the optimal fitting parameters.
The proposed algorithm has a wide range of application and the proposed algorithm can be used as a subroutine of other quantum algorithms.
arXiv Detail & Related papers (2021-04-27T11:03:52Z) - Plug-And-Play Learned Gaussian-mixture Approximate Message Passing [71.74028918819046]
We propose a plug-and-play compressed sensing (CS) recovery algorithm suitable for any i.i.d. source prior.
Our algorithm builds upon Borgerding's learned AMP (LAMP), yet significantly improves it by adopting a universal denoising function within the algorithm.
Numerical evaluation shows that the L-GM-AMP algorithm achieves state-of-the-art performance without any knowledge of the source prior.
arXiv Detail & Related papers (2020-11-18T16:40:45Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems.
We focus on two classical embeddings, namely, Gaussian projections and subsampled Hadamard transforms.
Our resulting algorithm yields the best complexity known for solving least-squares problems with no condition number dependence.
arXiv Detail & Related papers (2020-02-21T17:45:32Z) - Optimal Iterative Sketching with the Subsampled Randomized Hadamard
Transform [64.90148466525754]
We study the performance of iterative sketching for least-squares problems.
We show that the convergence rate for Haar and randomized Hadamard matrices are identical, andally improve upon random projections.
These techniques may be applied to other algorithms that employ randomized dimension reduction.
arXiv Detail & Related papers (2020-02-03T16:17:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.