Residual Networks based Distortion Classification and Ranking for
Laparoscopic Image Quality Assessment
- URL: http://arxiv.org/abs/2106.06784v1
- Date: Sat, 12 Jun 2021 14:26:11 GMT
- Title: Residual Networks based Distortion Classification and Ranking for
Laparoscopic Image Quality Assessment
- Authors: Zohaib Amjad Khan, Azeddine Beghdadi, Mounir Kaaniche and Faouzi Alaya
Cheikh
- Abstract summary: Laparoscopic images and videos are often affected by different types of distortion like noise, smoke, blur and nonuniform illumination.
We propose in this paper to formulate the image quality assessment task as a multi-label classification problem taking into account both the type as well as the severity level (or rank) of distortions.
The obtained results on a laparoscopic image dataset show the efficiency of the proposed approach.
- Score: 12.374294852377382
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Laparoscopic images and videos are often affected by different types of
distortion like noise, smoke, blur and nonuniform illumination. Automatic
detection of these distortions, followed generally by application of
appropriate image quality enhancement methods, is critical to avoid errors
during surgery. In this context, a crucial step involves an objective
assessment of the image quality, which is a two-fold problem requiring both the
classification of the distortion type affecting the image and the estimation of
the severity level of that distortion. Unlike existing image quality measures
which focus mainly on estimating a quality score, we propose in this paper to
formulate the image quality assessment task as a multi-label classification
problem taking into account both the type as well as the severity level (or
rank) of distortions. Here, this problem is then solved by resorting to a deep
neural networks based approach. The obtained results on a laparoscopic image
dataset show the efficiency of the proposed approach.
Related papers
- Blind Image Quality Assessment Using Multi-Stream Architecture with Spatial and Channel Attention [4.983104446206061]
BIQA (Blind Image Quality Assessment) is an important field of study that evaluates images automatically.
Most algorithms generate quality without emphasizing the important region of interest.
A multi-stream spatial and channel attention-based algorithm is being proposed to solve this problem.
arXiv Detail & Related papers (2023-07-19T09:36:08Z) - Expert-Agnostic Ultrasound Image Quality Assessment using Deep
Variational Clustering [0.03262230127283451]
Ultrasound images are low in quality and suffer from noisy annotations caused by inter-observer variations.
We propose an UnSupervised UltraSound image Quality assessment Network, US2QNet, that eliminates the burden and uncertainty of manual annotations.
The proposed framework achieved 78% accuracy and superior performance to state-of-the-art clustering methods.
arXiv Detail & Related papers (2023-07-05T17:34:58Z) - Explainable Image Quality Assessment for Medical Imaging [0.0]
Poor-quality medical images may lead to misdiagnosis.
We propose an explainable image quality assessment system and validate our idea on two different objectives.
We apply a variety of techniques to measure the faithfulness of the saliency detectors.
We show that NormGrad has significant gains over other saliency detectors by reaching a repeated Pointing Game score of 0.853 for Object-CXR and 0.611 for LVOT datasets.
arXiv Detail & Related papers (2023-03-25T14:18:39Z) - Non-Reference Quality Monitoring of Digital Images using Gradient
Statistics and Feedforward Neural Networks [0.1657441317977376]
A non-reference quality metric is proposed to assess the quality of digital images.
The proposed metric is computationally faster than its counterparts and can be used for the quality assessment of image sequences.
arXiv Detail & Related papers (2021-12-27T20:21:55Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
Conditional generative adversarial networks have been applied to generate synthetic histopathology images.
We propose a sharpness loss regularized generative adversarial network to synthesize realistic histopathology images.
arXiv Detail & Related papers (2021-10-27T18:54:25Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
We train a deep Convolutional Neural Network (CNN) using a contrastive pairwise objective to solve the auxiliary problem.
We show through extensive experiments that CONTRIQUE achieves competitive performance when compared to state-of-the-art NR image quality models.
Our results suggest that powerful quality representations with perceptual relevance can be obtained without requiring large labeled subjective image quality datasets.
arXiv Detail & Related papers (2021-10-25T21:01:00Z) - Estimating MRI Image Quality via Image Reconstruction Uncertainty [4.483523280360846]
We train CNNs using a heteroscedastic uncertainty model to recover clean images from noisy data.
We argue that quality control for visual assessment cannot be equated to quality control for algorithmic processing.
arXiv Detail & Related papers (2021-06-21T11:22:17Z) - Enhancing Fine-Grained Classification for Low Resolution Images [97.82441158440527]
Low resolution images suffer from the inherent challenge of limited information content and the absence of fine details useful for sub-category classification.
This research proposes a novel attribute-assisted loss, which utilizes ancillary information to learn discriminative features for classification.
The proposed loss function enables a model to learn class-specific discriminative features, while incorporating attribute-level separability.
arXiv Detail & Related papers (2021-05-01T13:19:02Z) - Towards Unsupervised Deep Image Enhancement with Generative Adversarial
Network [92.01145655155374]
We present an unsupervised image enhancement generative network (UEGAN)
It learns the corresponding image-to-image mapping from a set of images with desired characteristics in an unsupervised manner.
Results show that the proposed model effectively improves the aesthetic quality of images.
arXiv Detail & Related papers (2020-12-30T03:22:46Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
Low-quality fundus images increase uncertainty in clinical observation and lead to the risk of misdiagnosis.
We propose a clinically oriented fundus enhancement network (cofe-Net) to suppress global degradation factors.
Experiments on both synthetic and real images demonstrate that our algorithm effectively corrects low-quality fundus images without losing retinal details.
arXiv Detail & Related papers (2020-05-12T08:01:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.