Beyond Pixels: Medical Image Quality Assessment with Implicit Neural Representations
- URL: http://arxiv.org/abs/2508.05168v1
- Date: Thu, 07 Aug 2025 09:00:06 GMT
- Title: Beyond Pixels: Medical Image Quality Assessment with Implicit Neural Representations
- Authors: Caner Özer, Patryk Rygiel, Bram de Wilde, İlkay Öksüz, Jelmer M. Wolterink,
- Abstract summary: Artifacts pose a significant challenge in medical imaging, impacting diagnostic accuracy and downstream analysis.<n>We propose the use of implicit neural representations (INRs) for image quality assessment.<n>Our method is evaluated on the ACDC dataset with synthetically generated artifact patterns.
- Score: 2.0934875997852096
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artifacts pose a significant challenge in medical imaging, impacting diagnostic accuracy and downstream analysis. While image-based approaches for detecting artifacts can be effective, they often rely on preprocessing methods that can lead to information loss and high-memory-demand medical images, thereby limiting the scalability of classification models. In this work, we propose the use of implicit neural representations (INRs) for image quality assessment. INRs provide a compact and continuous representation of medical images, naturally handling variations in resolution and image size while reducing memory overhead. We develop deep weight space networks, graph neural networks, and relational attention transformers that operate on INRs to achieve image quality assessment. Our method is evaluated on the ACDC dataset with synthetically generated artifact patterns, demonstrating its effectiveness in assessing image quality while achieving similar performance with fewer parameters.
Related papers
- Metrics that matter: Evaluating image quality metrics for medical image generation [48.85783422900129]
This study comprehensively assesses commonly used no-reference image quality metrics using brain MRI data.<n>We evaluate metric sensitivity to a range of challenges, including noise, distribution shifts, and, critically, morphological alterations designed to mimic clinically relevant inaccuracies.
arXiv Detail & Related papers (2025-05-12T01:57:25Z) - Bidirectional Brain Image Translation using Transfer Learning from Generic Pre-trained Models [0.0]
In the medical domain, where obtaining labeled medical images is labor-intensive and expensive, addressing data scarcity is a major challenge.<n>Recent studies propose using transfer learning to overcome this issue.<n>In this work, transfer learning was applied to the task of MR-CT image translation and vice versa using 18 pre-trained non-medical models.
arXiv Detail & Related papers (2025-01-21T20:30:15Z) - Contextual Checkerboard Denoise -- A Novel Neural Network-Based Approach for Classification-Aware OCT Image Denoising [1.8032335403003321]
We introduce a novel neural network based method -- emphContextual Checkerboard Denoising, that can learn denoising from only a dataset of noisy images.<n>Our proposed method significantly improves image quality, providing clearer and more detailed OCT images, while enhancing diagnostic accuracy.
arXiv Detail & Related papers (2024-11-29T08:51:43Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
We propose a unified MRI reconstruction model robust to various measurement undersampling patterns and image resolutions.<n>Our model improves SSIM by 11% and PSNR by 4 dB over a state-of-the-art CNN (End-to-End VarNet) with 600$times$ faster inference than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Non-Reference Quality Assessment for Medical Imaging: Application to Synthetic Brain MRIs [0.0]
This study introduces a novel deep learning-based non-reference approach to assess brain MRI quality by training a 3D ResNet.
The network is designed to estimate quality across six distinct artifacts commonly encountered in MRI scans.
Results demonstrate superior performance in accurately estimating distortions and reflecting image quality from multiple perspectives.
arXiv Detail & Related papers (2024-07-20T22:05:30Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Explainable Image Quality Assessment for Medical Imaging [0.0]
Poor-quality medical images may lead to misdiagnosis.
We propose an explainable image quality assessment system and validate our idea on two different objectives.
We apply a variety of techniques to measure the faithfulness of the saliency detectors.
We show that NormGrad has significant gains over other saliency detectors by reaching a repeated Pointing Game score of 0.853 for Object-CXR and 0.611 for LVOT datasets.
arXiv Detail & Related papers (2023-03-25T14:18:39Z) - Negligible effect of brain MRI data preprocessing for tumor segmentation [36.89606202543839]
We conduct experiments on three publicly available datasets and evaluate the effect of different preprocessing steps in deep neural networks.
Our results demonstrate that most popular standardization steps add no value to the network performance.
We suggest that image intensity normalization approaches do not contribute to model accuracy because of the reduction of signal variance with image standardization.
arXiv Detail & Related papers (2022-04-11T17:29:36Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - Image Quality Assessment for Magnetic Resonance Imaging [4.05136808278614]
Image quality assessment (IQA) algorithms aim to reproduce the human's perception of the image quality.
We use outputs of neural network models trained to solve problems relevant to MRI.
Seven trained radiologists assess distorted images, with their verdicts then correlated with 35 different image quality metrics.
arXiv Detail & Related papers (2022-03-15T11:52:29Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
We train a deep Convolutional Neural Network (CNN) using a contrastive pairwise objective to solve the auxiliary problem.
We show through extensive experiments that CONTRIQUE achieves competitive performance when compared to state-of-the-art NR image quality models.
Our results suggest that powerful quality representations with perceptual relevance can be obtained without requiring large labeled subjective image quality datasets.
arXiv Detail & Related papers (2021-10-25T21:01:00Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.