論文の概要: Intelligent Agent for Hurricane Emergency Identification and Text
Information Extraction from Streaming Social Media Big Data
- arxiv url: http://arxiv.org/abs/2106.07114v1
- Date: Mon, 14 Jun 2021 00:12:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-16 06:09:12.819836
- Title: Intelligent Agent for Hurricane Emergency Identification and Text
Information Extraction from Streaming Social Media Big Data
- Title(参考訳): ソーシャルメディアビッグデータからのハリケーン緊急識別とテキスト情報抽出のためのインテリジェントエージェント
- Authors: Jingwei Huang, Wael Khallouli, Ghaith Rabadi, Mamadou Seck
- Abstract要約: 我々はHurricane Harveyと関連するヒューストン洪水を研究の動機付けシナリオとして使っている。
本研究は,災害時緊急対応における緊急センター支援の補助的役割として,インテリジェントエージェントを用いた概念実証のためのプロトタイプを開発する。
本発明のインテリジェントエージェントは、自然災害イベント中にリアルタイムのストリーミングツイートを収集し、救助要請のツイートを識別し、アドレスやジオコードなどの重要な情報を抽出し、意思決定支援においてインタラクティブマップで抽出した情報を可視化する。
- 参考スコア(独自算出の注目度): 10.783778350418785
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents our research on leveraging social media Big Data and AI
to support hurricane disaster emergency response. The current practice of
hurricane emergency response for rescue highly relies on emergency call
centres. The more recent Hurricane Harvey event reveals the limitations of the
current systems. We use Hurricane Harvey and the associated Houston flooding as
the motivating scenario to conduct research and develop a prototype as a
proof-of-concept of using an intelligent agent as a complementary role to
support emergency centres in hurricane emergency response. This intelligent
agent is used to collect real-time streaming tweets during a natural disaster
event, to identify tweets requesting rescue, to extract key information such as
address and associated geocode, and to visualize the extracted information in
an interactive map in decision supports. Our experiment shows promising
outcomes and the potential application of the research in support of hurricane
emergency response.
- Abstract(参考訳): 本稿では,ソーシャルメディアのビッグデータとaiを活用したハリケーン災害対応に関する研究について述べる。
現在、救助のためのハリケーン緊急対応の実践は緊急コールセンターに大きく依存している。
最近のハリケーン・ハーヴェイは現在のシステムの限界を明らかにしている。
ハリケーン・ハーヴェイと関連するヒューストン洪水を研究の動機とし、ハリケーン緊急対応の緊急センターを支援するためにインテリジェントエージェントを補完的な役割として使うという概念実証としてプロトタイプを開発した。
このインテリジェントエージェントは、自然災害時のリアルタイムストリーミングツイートの収集、救助要請ツイートの識別、住所や関連するジオコードなどのキー情報抽出、そして、抽出された情報を意思決定支援のインタラクティブマップに可視化する。
本実験は,ハリケーンの緊急対応を支援する研究の有望な成果と潜在的応用を示す。
関連論文リスト
- CrisisSense-LLM: Instruction Fine-Tuned Large Language Model for Multi-label Social Media Text Classification in Disaster Informatics [49.2719253711215]
本研究では,事前学習型大規模言語モデル(LLM)の強化による災害テキスト分類への新たなアプローチを提案する。
本手法では,災害関連ツイートから包括的インストラクションデータセットを作成し,それをオープンソース LLM の微調整に用いる。
この微調整モデルでは,災害関連情報の種類,情報化,人的援助の関与など,複数の側面を同時に分類することができる。
論文 参考訳(メタデータ) (2024-06-16T23:01:10Z) - Information Retrieval and Classification of Real-Time Multi-Source
Hurricane Evacuation Notices [2.500155415916692]
我々は,局所的に発行されたハリケーン避難通知をタイムリーに検出し,追跡する手法を開発した。
テキストデータは,主に空間的対象Webスクレイピング法を用いて収集された。
このフレームワークは、迅速かつ標的とした検索、分類、再配布、リアルタイムの政府命令と通知のアーカイブのための他の種類の災害に適用することができる。
論文 参考訳(メタデータ) (2024-01-07T16:35:30Z) - CrisisMatch: Semi-Supervised Few-Shot Learning for Fine-Grained Disaster
Tweet Classification [51.58605842457186]
半教師付き, 少数ショットの学習環境下で, 微粒な災害ツイート分類モデルを提案する。
私たちのモデルであるCrisisMatchは、ラベルなしデータと大量のラベルなしデータを用いて、ツイートを関心の細かいクラスに効果的に分類する。
論文 参考訳(メタデータ) (2023-10-23T07:01:09Z) - Sarcasm Detection in a Disaster Context [103.93691731605163]
HurricaneSARCは,意図した皮肉に注釈を付けた15,000ツイートのデータセットである。
私たちの最高のモデルは、データセットで最大0.70F1を得ることができます。
論文 参考訳(メタデータ) (2023-08-16T05:58:12Z) - Artificial Intelligence for Emergency Response [0.6091702876917281]
緊急対応管理(ERM)は、世界中のコミュニティが直面している課題である。
データ駆動モデルは、人的および財政的な損失を減らし、設計コード、交通規制、安全対策を改善するのに役立つ。
本チュートリアルでは,緊急応答における4つのサブプロブレム(インシデント予測,インシデント検出,リソース割り当て,リソースディスパッチ)について検討する。
論文 参考訳(メタデータ) (2023-06-15T18:16:08Z) - Mining Root Cause Knowledge from Cloud Service Incident Investigations
for AIOps [71.12026848664753]
サービス破壊インシデントの根本原因分析(RCA)は、ITプロセスにおける最も重要かつ複雑なタスクの1つです。
本研究では、Salesforceで構築されたICAと、ダウンストリームのインシデントサーチとレトリーバルベースのRCAパイプラインについて紹介する。
論文 参考訳(メタデータ) (2022-04-21T02:33:34Z) - ADAPT: An Open-Source sUAS Payload for Real-Time Disaster Prediction and
Response with AI [55.41644538483948]
小型無人航空機システム(sUAS)は、多くの人道支援や災害対応作戦において顕著な構成要素となっている。
我々は,SUAS上にリアルタイムAIとコンピュータビジョンをデプロイするための,オープンソースのADAPTマルチミッションペイロードを開発した。
本研究では,河川氷の状態を監視し,破滅的な洪水現象をタイムリーに予測するための,リアルタイム・飛行中の氷分断の例を示す。
論文 参考訳(メタデータ) (2022-01-25T14:51:19Z) - Emergency Incident Detection from Crowdsourced Waze Data using Bayesian
Information Fusion [4.039649741925056]
本稿では,ノイズの多いクラウドソーシングWazeデータを用いた緊急インシデント検出手法を提案する。
本稿では,クラウドレポートの信頼性の不確かさをモデル化するための観測理論に基づく計算手法を提案する。
論文 参考訳(メタデータ) (2020-11-10T22:45:03Z) - Physics-informed GANs for Coastal Flood Visualization [65.54626149826066]
我々は,現在および将来の沿岸洪水の衛星画像を生成する深層学習パイプラインを構築した。
物理に基づく洪水図と比較して画像を評価することにより,提案手法は物理的一貫性とフォトリアリズムの両方において,ベースラインモデルよりも優れていることがわかった。
この研究は沿岸の洪水の可視化に焦点が当てられているが、気候変動が地球をどう形作るかのグローバルな可視化を作成することを想定している。
論文 参考訳(メタデータ) (2020-10-16T02:15:34Z) - Improving Community Resiliency and Emergency Response With Artificial
Intelligence [0.05541644538483946]
我々は、ステークホルダーが包括的で関連性があり、信頼できる情報にタイムリーにアクセスできるようにする、多段階の緊急対応ツールを目指しています。
本ツールは, 浸水リスク位置, 道路ネットワーク強度, 浸水マップ, 浸水地や被害インフラを推定するコンピュータビジョンセマンティックセマンティックセマンティックセグメンテーションなど, オープンソースの地理空間データの複数の層を符号化して構成する。
これらのデータレイヤを組み合わせて、緊急時の避難経路の検索や、最初に影響を受けたエリアで最初の応答者のために利用可能な宿泊場所のリストを提供するなど、機械学習アルゴリズムの入力データとして利用する。
論文 参考訳(メタデータ) (2020-05-28T18:05:08Z) - Social Media Information Sharing for Natural Disaster Response [0.0]
ソーシャルメディアは災害関連情報を投稿するための重要なチャンネルとなり、政府や救援機関が災害管理を改善するためのリアルタイムデータを提供している。
本研究の目的は,災害対応に対する公衆の態度や災害時の防災物資に対する公衆の要求など,ソーシャルメディアデータのマイニング・分析による防災効率の向上である。
論文 参考訳(メタデータ) (2020-05-08T21:11:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。