論文の概要: Outlier detection in multivariate functional data through a contaminated
mixture model
- arxiv url: http://arxiv.org/abs/2106.07222v1
- Date: Mon, 14 Jun 2021 08:17:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-15 15:39:23.064228
- Title: Outlier detection in multivariate functional data through a contaminated
mixture model
- Title(参考訳): 汚染混合モデルによる多変量関数データの異常検出
- Authors: Martial Amovin-Assagba (ERIC, AMK), Ir\`ene Gannaz, Julien Jacques
(ERIC)
- Abstract要約: この研究は、センサーのアクティビティを高頻度で記録する産業環境での応用によって動機付けられている。
目的は、異常な測定行動を自動的に検出することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work is motivated by an application in an industrial context, where the
activity of sensors is recorded at a high frequency. The objective is to
automatically detect abnormal measurement behaviour. Considering the sensor
measures as functional data, we are formally interested in detecting outliers
in a multivariate functional data set. Due to the heterogeneity of this data
set, the proposed contaminated mixture model both clusters the multivariate
functional data into homogeneous groups and detects outliers. The main
advantage of this procedure over its competitors is that it does not require us
to specify the proportion of outliers. Model inference is performed through an
Expectation-Conditional Maximization algorithm, and the BIC criterion is used
to select the number of clusters. Numerical experiments on simulated data
demonstrate the high performance achieved by the inference algorithm. In
particular, the proposed model outperforms competitors. Its application on the
real data which motivated this study allows us to correctly detect abnormal
behaviours.
- Abstract(参考訳): この研究は、センサーのアクティビティを高頻度で記録する産業環境での応用によって動機付けられている。
目的は、異常な測定行動を自動的に検出することである。
センサ測度を機能データとして考慮し,多変量関数データセットにおける異常値の検出に正式に関心を持っている。
このデータセットの不均一性のため、提案した汚染混合モデルの両方が多変量関数データを同種群にクラスタリングし、外れ値を検出する。
この手続きの競合相手に対する大きな利点は、外れ値の比率を指定する必要がないことである。
モデル推論は期待-決定的最大化アルゴリズムを用いて行われ、BIC基準を用いてクラスタ数を選択する。
シミュレーションデータを用いた数値実験により, 推定アルゴリズムの高性能化が示された。
特に、提案されたモデルは競合より優れている。
本研究の動機となった実データへの応用は,異常行動を正確に検出することを可能にする。
関連論文リスト
- Causal Feature Selection via Transfer Entropy [59.999594949050596]
因果発見は、観察データによる特徴間の因果関係を特定することを目的としている。
本稿では,前向きと後向きの機能選択に依存する新たな因果的特徴選択手法を提案する。
精度および有限サンプルの場合の回帰誤差と分類誤差について理論的に保証する。
論文 参考訳(メタデータ) (2023-10-17T08:04:45Z) - On the Universal Adversarial Perturbations for Efficient Data-free
Adversarial Detection [55.73320979733527]
本稿では,UAPに対して正常サンプルと逆サンプルの異なる応答を誘導する,データに依存しない逆検出フレームワークを提案する。
実験結果から,本手法は様々なテキスト分類タスクにおいて,競合検出性能を実現することが示された。
論文 参考訳(メタデータ) (2023-06-27T02:54:07Z) - Fast kernel methods for Data Quality Monitoring as a goodness-of-fit
test [10.882743697472755]
本稿では,粒子検出器をリアルタイムで監視するための機械学習手法を提案する。
目標は、入ってくる実験データと参照データセットとの互換性を評価し、通常の状況下でのデータ挙動を特徴づけることである。
このモデルはカーネルメソッドの現代的な実装に基づいており、十分なデータを与えられた連続関数を学習できる非パラメトリックアルゴリズムである。
論文 参考訳(メタデータ) (2023-03-09T16:59:35Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
我々は、従来のEMベースのアルゴリズムを拡張するための全体的なデータの特徴付けを導出する。
新しいアルゴリズムは、そのような混合データソースからモデルパラメータの(不特定性)領域を近似することを学ぶ。
反実的な結果に間隔近似を与え、それが特定可能な場合の点に崩壊する。
論文 参考訳(メタデータ) (2022-12-06T12:42:11Z) - Multimodal Data Fusion in High-Dimensional Heterogeneous Datasets via
Generative Models [16.436293069942312]
我々は、教師なしの方法で高次元異種データから確率的生成モデルを学習することに興味がある。
本稿では,指数関数的な分布系を通じて異なるデータ型を結合する一般的なフレームワークを提案する。
提案アルゴリズムは、実数値(ガウス)とカテゴリー(マルチノミカル)の特徴を持つ、よく遭遇する異種データセットについて詳細に述べる。
論文 参考訳(メタデータ) (2021-08-27T18:10:31Z) - ESAD: End-to-end Deep Semi-supervised Anomaly Detection [85.81138474858197]
正規データと異常データの間のKL偏差を計測する新たな目的関数を提案する。
提案手法は,複数のベンチマークデータセットの最先端性能を著しく上回っている。
論文 参考訳(メタデータ) (2020-12-09T08:16:35Z) - Dynamic Bayesian Approach for decision-making in Ego-Things [8.577234269009042]
本稿では,マルチセンサデータと特徴選択に基づく動的システムの異常検出手法を提案する。
成長型ニューラルガス(GNG)は、マルチセンサーデータを一連のノードにクラスタリングするために使用される。
本手法は状態推定と異常検出にマルコフジャンプ粒子フィルタ(MJPF)を用いる。
論文 参考訳(メタデータ) (2020-10-28T11:38:51Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z) - Categorical anomaly detection in heterogeneous data using minimum
description length clustering [3.871148938060281]
異種データを扱うため,MPLに基づく異常検出モデルの拡張のためのメタアルゴリズムを提案する。
実験の結果, 離散混合モデルを用いることで, 従来の2つの異常検出アルゴリズムと比較して, 競合性能が向上することがわかった。
論文 参考訳(メタデータ) (2020-06-14T14:48:37Z) - A Causal Direction Test for Heterogeneous Populations [10.653162005300608]
ほとんどの因果モデルでは、単一の同質な集団を仮定するが、これは多くの応用において成り立たない仮定である。
等質性仮定に違反した場合、そのような仮定に基づいて開発された因果モデルが正しい因果方向を識別できないことを示す。
我々は,$k$-means型クラスタリングアルゴリズムを用いて,一般的な因果方向検定統計量の調整を提案する。
論文 参考訳(メタデータ) (2020-06-08T18:59:14Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。