Time Series Anomaly Detection with label-free Model Selection
- URL: http://arxiv.org/abs/2106.07473v1
- Date: Fri, 11 Jun 2021 00:21:06 GMT
- Title: Time Series Anomaly Detection with label-free Model Selection
- Authors: Deokwoo Jung, Nandini Ramanan, Mehrnaz Amjadi, Sankeerth Rao
Karingula, Jake Taylor, and Claudionor Nunes Coelho Jr
- Abstract summary: We propose LaF-AD, a novel anomaly detection algorithm with label-free model selection for unlabeled times-series data.
Our algorithm is easily parallelizable, more robust for ill-conditioned and seasonal data, and highly scalable for a large number of anomaly models.
- Score: 0.6303112417588329
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomaly detection for time-series data becomes an essential task for many
data-driven applications fueled with an abundance of data and out-of-the-box
machine-learning algorithms. In many real-world settings, developing a reliable
anomaly model is highly challenging due to insufficient anomaly labels and the
prohibitively expensive cost of obtaining anomaly examples. It imposes a
significant bottleneck to evaluate model quality for model selection and
parameter tuning reliably. As a result, many existing anomaly detection
algorithms fail to show their promised performance after deployment.
In this paper, we propose LaF-AD, a novel anomaly detection algorithm with
label-free model selection for unlabeled times-series data. Our proposed
algorithm performs a fully unsupervised ensemble learning across a large number
of candidate parametric models. We develop a model variance metric that
quantifies the sensitivity of anomaly probability with a bootstrapping method.
Then it makes a collective decision for anomaly events by model learners using
the model variance. Our algorithm is easily parallelizable, more robust for
ill-conditioned and seasonal data, and highly scalable for a large number of
anomaly models. We evaluate our algorithm against other state-of-the-art
methods on a synthetic domain and a benchmark public data set.
Related papers
- AnomalyLLM: Few-shot Anomaly Edge Detection for Dynamic Graphs using Large Language Models [19.36513465638031]
AnomalyLLM is an in-context learning framework that integrates the information of a few labeled samples to achieve few-shot anomaly detection.
Experiments on four datasets reveal that AnomalyLLM can not only significantly improve the performance of few-shot anomaly detection, but also achieve superior results on new anomalies without any update of model parameters.
arXiv Detail & Related papers (2024-05-13T10:37:50Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - DEGAN: Time Series Anomaly Detection using Generative Adversarial
Network Discriminators and Density Estimation [0.0]
We have proposed an unsupervised Generative Adversarial Network (GAN)-based anomaly detection framework, DEGAN.
It relies solely on normal time series data as input to train a well-configured discriminator (D) into a standalone anomaly predictor.
arXiv Detail & Related papers (2022-10-05T04:32:12Z) - Unsupervised Model Selection for Time-series Anomaly Detection [7.8027110514393785]
We identify three classes of surrogate (unsupervised) metrics, namely, prediction error, model centrality, and performance on injected synthetic anomalies.
We formulate metric combination with multiple imperfect surrogate metrics as a robust rank aggregation problem.
Large-scale experiments on multiple real-world datasets demonstrate that our proposed unsupervised approach is as effective as selecting the most accurate model.
arXiv Detail & Related papers (2022-10-03T16:49:30Z) - MOSPAT: AutoML based Model Selection and Parameter Tuning for Time
Series Anomaly Detection [8.942168855247548]
MOSPAT is an end-to-end automated machine learning based approach for model and parameter selection.
Our experiments on real and synthetic data demonstrate that this method consistently outperforms using any single algorithm.
arXiv Detail & Related papers (2022-05-24T03:28:52Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - Automated Model Selection for Time-Series Anomaly Detection [6.396011708581161]
Many companies need to monitor thousands of temporal signals for their applications and services and require instant feedback and alerts for potential incidents in time.
The task is challenging because of the complex characteristics of time-series, which are messy, and often without proper labels.
This prohibits training supervised models because of lack of labels and a single model hardly fits different time series.
We present an automated model selection framework to automatically find the most suitable detection model with proper parameters for the incoming data.
arXiv Detail & Related papers (2020-08-25T07:23:43Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.