Quadratic spin-phonon coupling and bipolarons in trapped ions
- URL: http://arxiv.org/abs/2502.04109v1
- Date: Thu, 06 Feb 2025 14:34:34 GMT
- Title: Quadratic spin-phonon coupling and bipolarons in trapped ions
- Authors: L. P. H. Gallagher, M. Mazzanti, Z. E. D. Ackerman, R. J. C. Spreeuw, A. Safavi-Naini, R. Gerritsma,
- Abstract summary: We consider the quantum simulation of quadratic spin-phonon coupling in a crystal of trapped ions.
We calculate the emergence of mobile bipolarons driven by the zero-point energy of the ion crystal phonons.
- Score: 0.0
- License:
- Abstract: We consider the quantum simulation of quadratic spin-phonon coupling in a crystal of trapped ions. The coupling is implemented using tightly focused optical tweezers on each ion that change the local trapping potential in a state-dependent way. By encoding spins in the internal states of the ions and adding a tunneling term via M{\o}lmer-S{\o}rensen-type interactions, we calculate the emergence of mobile bipolarons driven by the zero-point energy of the ion crystal phonons. We show that thermal occupation may pin the bipolarons for ion crystals at finite temperature. Our scheme can be used to study and illustrate the emergence of mobile bipolarons as a function of temperature.
Related papers
- Raman-phonon-polariton condensation in a transversely pumped cavity [44.99833362998488]
We suggest a new approach to realising phonon polaritons, by employing a transverse-pumping Raman scheme.
We show that such a system may realise a phonon-polariton condensate.
arXiv Detail & Related papers (2024-05-08T17:59:31Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Adiabatically controlled motional states of a ground-state cooled
CaO$^{+}$ and Ca$^{+}$ trapped ion chain [6.1524835590475]
Control of the external degree of freedom of trapped molecular ions is a prerequisite for their promising applications to spectroscopy, precision measurements of fundamental constants, and quantum information technology.
We demonstrate near ground-state cooling of the axial motional modes of a calcium mono-oxide ion via sympathetic sideband cooling with a co-trapped calcium ion.
arXiv Detail & Related papers (2022-12-09T20:07:01Z) - Engineering steady entanglement for trapped ions at finite temperature
by dissipation [0.0]
We propose a dissipative method for preparation of a maximally entangled steady state of two trapped ions in the Lamb-Dicke limit.
We obtain an effective coupling between two particles, which is independent of the phonon-number fluctuations.
Our result shows that the CHSH inequality can be violated for a wide range of decoherence parameters, even at finite temperature.
arXiv Detail & Related papers (2022-07-13T02:42:06Z) - Trapped Ion Quantum Computing using Optical Tweezers and Electric Fields [0.0]
We propose a new architecture for trapped ion quantum computing that combines optical tweezers delivering qubit state-dependent local potentials with oscillating electric fields.
Since the electric field allows for long-range qubit-qubit interactions mediated by the center-of-mass motion of the ion crystal alone, it is inherently scalable to large ion crystals.
arXiv Detail & Related papers (2021-06-14T15:16:16Z) - Evaluating states in trapped ions with local correlation between
internal and motional degrees of freedom [0.0]
We propose and demonstrate a scalable scheme for the simultaneous determination of internal and motional states in trapped ions with single-site resolution.
The scheme is applied to the study of polaritonic excitations in the Jaynes- Cummings Hubbard model with trapped ions.
arXiv Detail & Related papers (2021-05-11T03:48:35Z) - Algorithmic Ground-state Cooling of Weakly-Coupled Oscillators using
Quantum Logic [52.77024349608834]
We introduce a novel algorithmic cooling protocol for transferring phonons from poorly- to efficiently-cooled modes.
We demonstrate it experimentally by simultaneously bringing two motional modes of a Be$+$-Ar$13+$ mixed Coulomb crystal close to their zero-point energies.
We reach the lowest temperature reported for a highly charged ion, with a residual temperature of only $Tlesssim200mathrmmu K$ in each of the two modes.
arXiv Detail & Related papers (2021-02-24T17:46:15Z) - Trapping, Shaping and Isolating of Ion Coulomb Crystals via
State-selective Optical Potentials [55.41644538483948]
In conventional ion traps, the trapping potential is close to independent of the electronic state, providing confinement for ions dependent on their charge-to-mass ratio $Q/m$.
Here we experimentally study optical dipole potentials for $138mathrmBa+$ ions stored within two distinctive traps operating at 532 nm and 1064 nm.
arXiv Detail & Related papers (2020-10-26T14:36:48Z) - Ancilla mediated qubit readout and heralded entanglement between
rare-earth dopant ions in crystals [68.8204255655161]
We show how a Bayesian analysis exhausts the information about the state of the qubit from the optical signal of the ancilla ion.
We extend the architecture to ions residing in two remote cavities, and we show how continuous monitoring of fluorescence signals from the two ancilla ions leads to entanglement of the qubit ions.
arXiv Detail & Related papers (2020-07-06T16:31:46Z) - Trapped Rydberg ions: a new platform for quantum information processing [27.84400682210533]
Trapped Rydberg ions feature several important properties, unique in their combination.
High fidelity state preparation of both internal and motional states of the ions has been demonstrated.
Strong dipolar interactions can be realised between ions in Rydberg states.
arXiv Detail & Related papers (2020-03-19T16:37:46Z) - Properties of phonon modes of ion trap quantum computer in the Aubry
phase [0.0]
We study the properties of phonon modes in an ion quantum computer.
We show that in the Aubry phase the phonon modes are much better localized compared to the Cirac-Zoller and KAM cases.
arXiv Detail & Related papers (2020-02-10T13:32:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.