MIA-COV19D: COVID-19 Detection through 3-D Chest CT Image Analysis
- URL: http://arxiv.org/abs/2106.07524v1
- Date: Mon, 14 Jun 2021 15:48:14 GMT
- Title: MIA-COV19D: COVID-19 Detection through 3-D Chest CT Image Analysis
- Authors: Dimitrios Kollias and Anastasios Arsenos and Levon Soukissian and
Stefanos Kollias
- Abstract summary: We present the COV19-CT-DB database which is annotated for COVID-19, consisting of about 5,000 3-D CT scans.
Due to privacy issues, publicly available COVID-19 CT datasets are highly difficult to obtain.
We also present a deep learning approach, based on a CNN-RNN network and report its performance on the COVID19-CT-DB database.
- Score: 4.5497948012757865
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Early and reliable COVID-19 diagnosis based on chest 3-D CT scans can assist
medical specialists in vital circumstances. Deep learning methodologies
constitute a main approach for chest CT scan analysis and disease prediction.
However, large annotated databases are necessary for developing deep learning
models that are able to provide COVID-19 diagnosis across various medical
environments in different countries. Due to privacy issues, publicly available
COVID-19 CT datasets are highly difficult to obtain, which hinders the research
and development of AI-enabled diagnosis methods of COVID-19 based on CT scans.
In this paper we present the COV19-CT-DB database which is annotated for
COVID-19, consisting of about 5,000 3-D CT scans, We have split the database in
training, validation and test datasets. The former two datasets can be used for
training and validation of machine learning models, while the latter will be
used for evaluation of the developed models. We also present a deep learning
approach, based on a CNN-RNN network and report its performance on the
COVID19-CT-DB database.
Related papers
- 3D-CT-GPT: Generating 3D Radiology Reports through Integration of Large Vision-Language Models [51.855377054763345]
This paper introduces 3D-CT-GPT, a Visual Question Answering (VQA)-based medical visual language model for generating radiology reports from 3D CT scans.
Experiments on both public and private datasets demonstrate that 3D-CT-GPT significantly outperforms existing methods in terms of report accuracy and quality.
arXiv Detail & Related papers (2024-09-28T12:31:07Z) - A Novel Automated Classification and Segmentation for COVID-19 using 3D
CT Scans [5.5957919486531935]
In COVID-19 computed tomography (CT) images of the lungs, ground glass turbidity is the most common finding that requires specialist diagnosis.
Some researchers propose the relevant DL models which can replace professional diagnostic specialists in clinics when lacking expertise.
Our model achieves 94.52% accuracy in the classification of lung lesions by 3 types: COVID, Pneumonia and Normal.
arXiv Detail & Related papers (2022-08-04T22:14:18Z) - COVIDx CT-3: A Large-scale, Multinational, Open-Source Benchmark Dataset
for Computer-aided COVID-19 Screening from Chest CT Images [82.74877848011798]
We introduce COVIDx CT-3, a large-scale benchmark dataset for detection of COVID-19 cases from chest CT images.
COVIDx CT-3 includes 431,205 CT slices from 6,068 patients across at least 17 countries.
We examine the data diversity and potential biases of the COVIDx CT-3 dataset, finding significant geographic and class imbalances.
arXiv Detail & Related papers (2022-06-07T06:35:48Z) - HRCTCov19 -- A High-Resolution Chest CT Scan Image Dataset for COVID-19
Diagnosis and Differentiation [0.0]
During the COVID-19 pandemic, computed tomography (CT) was a popular method for diagnosing COVID-19 patients.
Publicly accessible COVID-19 CT image datasets are difficult to come by due to privacy concerns.
We have introduced HRCTCov19, a new COVID-19 high-resolution chest CT scan image dataset.
arXiv Detail & Related papers (2022-05-06T12:49:18Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
COVID-19 pandemic has spread rapidly and caused a shortage of global medical resources.
CNN has been widely utilized and verified in analyzing medical images.
arXiv Detail & Related papers (2022-03-24T02:09:41Z) - The pitfalls of using open data to develop deep learning solutions for
COVID-19 detection in chest X-rays [64.02097860085202]
Deep learning models have been developed to identify COVID-19 from chest X-rays.
Results have been exceptional when training and testing on open-source data.
Data analysis and model evaluations show that the popular open-source dataset COVIDx is not representative of the real clinical problem.
arXiv Detail & Related papers (2021-09-14T10:59:11Z) - COVID-19 identification from volumetric chest CT scans using a
progressively resized 3D-CNN incorporating segmentation, augmentation, and
class-rebalancing [4.446085353384894]
COVID-19 is a global pandemic disease overgrowing worldwide.
Computer-aided screening tools with greater sensitivity is imperative for disease diagnosis and prognosis.
This article proposes a 3D Convolutional Neural Network (CNN)-based classification approach.
arXiv Detail & Related papers (2021-02-11T18:16:18Z) - Few-shot Learning for CT Scan based COVID-19 Diagnosis [33.26861533338019]
Coronavirus disease 2019 (COVID-19) is a Public Health Emergency of International Concern infecting more than 40 million people across 188 countries and territories.
Deep learning approaches have become an effective tool for automatic screening of medical images, and it is also being considered for COVID-19 diagnosis.
We propose a supervised domain adaption based COVID-19 CT diagnostic method which can perform effectively when only a small samples of labeled CT scans are available.
arXiv Detail & Related papers (2021-02-01T02:37:49Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
We propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification.
We also exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results.
arXiv Detail & Related papers (2021-01-14T03:45:01Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
We introduce COVIDNet-CT, a deep convolutional neural network architecture that is tailored for detection of COVID-19 cases from chest CT images.
We also introduce COVIDx-CT, a benchmark CT image dataset derived from CT imaging data collected by the China National Center for Bioinformation.
arXiv Detail & Related papers (2020-09-08T15:49:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.