A Generic Descent Aggregation Framework for Gradient-based Bi-level
Optimization
- URL: http://arxiv.org/abs/2102.07976v1
- Date: Tue, 16 Feb 2021 06:58:12 GMT
- Title: A Generic Descent Aggregation Framework for Gradient-based Bi-level
Optimization
- Authors: Risheng Liu, Pan Mu, Xiaoming Yuan, Shangzhi Zeng, Jin Zhang
- Abstract summary: We develop a novel Bi-level Descent Aggregation (BDA) framework for bi-level learning tasks.
BDA aggregates hierarchical objectives of both upper level and lower level.
We propose a new proof recipe to improve the convergence results of conventional gradient-based bi-level methods.
- Score: 41.894281911990554
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, gradient-based methods for solving bi-level optimization
tasks have drawn a great deal of interest from the machine learning community.
However, to calculate the gradient of the best response, existing research
always relies on the singleton of the lower-level solution set (a.k.a.,
Lower-Level Singleton, LLS). In this work, by formulating bi-level models from
an optimistic bi-level viewpoint, we first establish a novel Bi-level Descent
Aggregation (BDA) framework, which aggregates hierarchical objectives of both
upper level and lower level. The flexibility of our framework benefits from the
embedded replaceable task-tailored iteration dynamics modules, thereby
capturing a wide range of bi-level learning tasks. Theoretically, we derive a
new methodology to prove the convergence of BDA framework without the LLS
restriction. Besides, the new proof recipe we propose is also engaged to
improve the convergence results of conventional gradient-based bi-level methods
under the LLS simplification. Furthermore, we employ a one-stage technique to
accelerate the back-propagation calculation in a numerical manner. Extensive
experiments justify our theoretical results and demonstrate the superiority of
the proposed algorithm for hyper-parameter optimization and meta-learning
tasks.
Related papers
- A Primal-Dual-Assisted Penalty Approach to Bilevel Optimization with Coupled Constraints [66.61399765513383]
We develop a BLOCC algorithm to tackle BiLevel Optimization problems with Coupled Constraints.
We demonstrate its effectiveness on two well-known real-world applications.
arXiv Detail & Related papers (2024-06-14T15:59:36Z) - A Generalized Alternating Method for Bilevel Learning under the
Polyak-{\L}ojasiewicz Condition [63.66516306205932]
Bilevel optimization has recently regained interest owing to its applications in emerging machine learning fields.
Recent results have shown that simple alternating iteration-based iterations can match interest owing to convex lower-level objective.
arXiv Detail & Related papers (2023-06-04T17:54:11Z) - Averaged Method of Multipliers for Bi-Level Optimization without
Lower-Level Strong Convexity [43.092883358935545]
We propose a single loop Bi-level Averaged Method of Multipliers (sl-BAMM) for Bi-Level Optimization (BLO)
We provide non-asymptotic convergence analysis of sl-BAMM towards KKT stationary points, and the comparative advantage of our analysis lies in the absence of strong gradient boundedness assumption.
arXiv Detail & Related papers (2023-02-07T11:29:05Z) - Revisiting GANs by Best-Response Constraint: Perspective, Methodology,
and Application [49.66088514485446]
Best-Response Constraint (BRC) is a general learning framework to explicitly formulate the potential dependency of the generator on the discriminator.
We show that even with different motivations and formulations, a variety of existing GANs ALL can be uniformly improved by our flexible BRC methodology.
arXiv Detail & Related papers (2022-05-20T12:42:41Z) - Towards Extremely Fast Bilevel Optimization with Self-governed
Convergence Guarantees [42.514612465664605]
We propose a single-level formulation to uniformly understand existing explicit and implicit Gradient-based BLOs.
A striking feature of our convergence result is that, compared to those original unaccelerated GBLO versions, the fast BAGDC admits a unified non-asymptotic convergence theory towards stationarity.
arXiv Detail & Related papers (2022-05-20T09:46:10Z) - Value-Function-based Sequential Minimization for Bi-level Optimization [52.39882976848064]
gradient-based Bi-Level Optimization (BLO) methods have been widely applied to handle modern learning tasks.
There are almost no gradient-based methods able to solve BLO in challenging scenarios, such as BLO with functional constraints and pessimistic BLO.
We provide Bi-level Value-Function-based Sequential Minimization (BVFSM) to address the above issues.
arXiv Detail & Related papers (2021-10-11T03:13:39Z) - A Value-Function-based Interior-point Method for Non-convex Bi-level
Optimization [38.75417864443519]
Bi-level optimization model is able to capture a wide range of complex learning tasks with practical interest.
We propose a new interior Bi-level Value-based Interior-point scheme, we penalize the regularized value function of the lower level problem into the upper level objective.
arXiv Detail & Related papers (2021-06-15T09:10:40Z) - A Generic First-Order Algorithmic Framework for Bi-Level Programming
Beyond Lower-Level Singleton [49.23948907229656]
Bi-level Descent Aggregation is a flexible and modularized algorithmic framework for generic bi-level optimization.
We derive a new methodology to prove the convergence of BDA without the LLS condition.
Our investigations also demonstrate that BDA is indeed compatible to a verify of particular first-order computation modules.
arXiv Detail & Related papers (2020-06-07T05:18:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.