論文の概要: Hotel Recognition via Latent Image Embedding
- arxiv url: http://arxiv.org/abs/2106.08042v1
- Date: Tue, 15 Jun 2021 10:52:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-16 22:19:32.283761
- Title: Hotel Recognition via Latent Image Embedding
- Title(参考訳): 潜在画像埋め込みによるホテル認識
- Authors: Boris Tseytlin and Ilya Makarov
- Abstract要約: 我々は,メトリクス学習モデルをベンチマークするための堅牢なパイプラインを構築した。
対照的なTriplet損失は、Hotels-50kデータセットでのより良い検索を実現するために示される。
- 参考スコア(独自算出の注目度): 1.0013376065994979
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We approach the problem of hotel recognition with deep metric learning. We
overview the existing approaches and propose a modification to Contrastive loss
called Contrastive-Triplet loss. We construct a robust pipeline for
benchmarking metric learning models and perform experiments on Hotels-50K and
CUB200 datasets. Contrastive-Triplet loss is shown to achieve better retrieval
on Hotels-50k. We open-source our code.
- Abstract(参考訳): 我々は,ディープメトリック学習によるホテル認識の問題にアプローチする。
我々は,既存のアプローチを概観し,コントラスト三重項損失と呼ばれるコントラスト損失の修正を提案する。
メトリクス学習モデルをベンチマークし,Hotels-50KおよびCUB200データセット上で実験を行うための堅牢なパイプラインを構築した。
対照的なTriplet損失は、Hotels-50kでよりよく検索できることを示す。
コードをオープンソースにしています。
関連論文リスト
- Decorrelating Structure via Adapters Makes Ensemble Learning Practical for Semi-supervised Learning [50.868594148443215]
コンピュータビジョンでは、従来のアンサンブル学習法は訓練効率が低いか、限られた性能を示す。
本稿では,視覚的タスクに適応器を用いたDecorrelating Structure(DSA)による軽量,損失関数なし,アーキテクチャに依存しないアンサンブル学習を提案する。
論文 参考訳(メタデータ) (2024-08-08T01:31:38Z) - Unlearning via Sparse Representations [84.13849294580375]
本稿では,離散的な表現ボトルネックに基づく,ほぼ計算自由なゼロショットアンラーニング手法を提案する。
提案手法は,提案手法を効率的に学習し,他のデータセットにおけるモデルの性能に負のダメージを与えることを示す。
論文 参考訳(メタデータ) (2023-11-26T11:12:30Z) - A Recipe for Efficient SBIR Models: Combining Relative Triplet Loss with
Batch Normalization and Knowledge Distillation [3.364554138758565]
SBIR(Sketch-Based Image Retrieval)は、マルチメディア検索において重要なタスクであり、指定されたスケッチクエリにマッチした画像の集合を検索することを目的としている。
我々は, アンカーの類似性に基づく損失重み付けにより, 制限を克服する適応三重項損失である相対三重項損失(RTL)を導入する。
本稿では, 知識蒸留による精度の限界損失を抑えて, 小型モデルを効率的に訓練するための簡単な手法を提案する。
論文 参考訳(メタデータ) (2023-05-30T12:41:04Z) - Decoupled Kullback-Leibler Divergence Loss [90.54331083430597]
我々は、クルバック・リブラー(KL)の除算損失がデカップリングカルバック・リブラー(DKL)の除算損失と等価であることを証明した。
我々はKL/DKLにクラスワイドなグローバル情報を導入し、個々のサンプルからバイアスを取ります。
提案手法は,新たな最先端の対人ロバスト性を公衆のリーダーボード上で実現する。
論文 参考訳(メタデータ) (2023-05-23T11:17:45Z) - LOT: Layer-wise Orthogonal Training on Improving $\ell_2$ Certified
Robustness [14.206377940235091]
近年の研究では、リプシッツ制約によるディープニューラルネットワーク(DNN)のトレーニングは、対向的ロバスト性や安定性などのモデル特性を高めることができることが示されている。
本研究では,1-Lipschitz畳み込み層を効果的に学習するための層ワイド直交訓練法(LOT)を提案する。
LOTは、決定論的l2証明されたロバスト性に関して、ベースラインを著しく上回り、より深いニューラルネットワークにスケールすることを示す。
論文 参考訳(メタデータ) (2022-10-20T22:31:26Z) - KGE-CL: Contrastive Learning of Knowledge Graph Embeddings [64.67579344758214]
本稿では,知識グラフ埋め込みのための簡易かつ効率的な学習フレームワークを提案する。
これは、関連するエンティティと異なる三重項におけるエンティティ-リレーションのカップルのセマンティック距離を短縮することができる。
WN18RRデータセットで51.2% MRR、46.8% Hits@1、59.1% MRR、51.8% Hits@1、YAGO3-10データセットで達成できる。
論文 参考訳(メタデータ) (2021-12-09T12:45:33Z) - Instance-Conditional Knowledge Distillation for Object Detection [59.56780046291835]
所望の知識を求めるために,インスタンス条件蒸留フレームワークを提案する。
我々は、観測されたインスタンスを条件情報として使用し、検索プロセスをインスタンス条件の復号プロセスとして定式化する。
論文 参考訳(メタデータ) (2021-10-25T08:23:29Z) - Road Damage Detection using Deep Ensemble Learning [36.24563211765782]
道路損傷の効率的な検出と分類のためのアンサンブルモデルを提案する。
我々のソリューションは、You Only Look Once (YOLO-v4)として知られる最先端の物体検出器を利用する。
テスト1データセットでF1スコアが0.628、テスト2データセットで0.6358に達した。
論文 参考訳(メタデータ) (2020-10-30T03:18:14Z) - Learning Condition Invariant Features for Retrieval-Based Localization
from 1M Images [85.81073893916414]
我々は、より正確で、より一般化されたローカライゼーション特徴を学習する新しい方法を開発した。
難易度の高いオックスフォード・ロボットカーの夜間条件では、5m以内の局所化精度でよく知られた三重項損失を24.4%上回っている。
論文 参考訳(メタデータ) (2020-08-27T14:46:22Z) - 3rd Place Solution to "Google Landmark Retrieval 2020" [11.78419680436906]
本稿では,Google Landmark Retrieval 2020チャレンジに対する3位の詳細ソリューションについて紹介する。
メカニカルラーニングを用いたデータクリーニングとモデルの探索に重点を置いている。
我々はCorner-Cutmixと呼ばれるデータ拡張手法を採用し、モデルがマルチスケールで隠蔽されたランドマーク画像を認識する能力を向上する。
論文 参考訳(メタデータ) (2020-08-24T14:39:51Z) - SL-DML: Signal Level Deep Metric Learning for Multimodal One-Shot Action
Recognition [0.0]
埋め込み空間における近接探索に対する行動認識問題を削減するための計量学習手法を提案する。
我々は信号を画像にエンコードし、深い残差CNNを用いて特徴を抽出する。
結果として得られるエンコーダは特徴を埋め込み空間に変換し、より近い距離は類似の動作を符号化し、高い距離は異なる動作を符号化する。
論文 参考訳(メタデータ) (2020-04-23T11:28:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。