Stationary excitation waves and multimerization in arrays of quantum
emitters
- URL: http://arxiv.org/abs/2106.08213v2
- Date: Wed, 27 Oct 2021 15:00:20 GMT
- Title: Stationary excitation waves and multimerization in arrays of quantum
emitters
- Authors: Davide Lonigro, Paolo Facchi, Saverio Pascazio, Francesco V. Pepe,
Domenico Pomarico
- Abstract summary: We investigate the existence and characteristics of bound states, in which a single excitation is shared among the emitters and the field.
We focus on bound states in the continuum, occurring in correspondence of excitation energies in which a single excited emitter would decay.
We discuss the emergence of multimers, consisting in subsets of emitters separated by two lattice spacings in which the electromagnetic field is approximately vanishing.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore the features of an equally-spaced array of two-level quantum
emitters, that can be either natural atoms (or molecules) or artificial atoms,
coupled to a field with a single continuous degree of freedom (such as an
electromagnetic mode propagating in a waveguide). We investigate the existence
and characteristics of bound states, in which a single excitation is shared
among the emitters and the field. We focus on bound states in the continuum,
occurring in correspondence of excitation energies in which a single excited
emitter would decay. We characterize such bound states for an arbitrary number
of emitters, and obtain two main results, both ascribable to the presence of
evanescent fields. First, the excitation profile of the emitter states is a
sinusoidal wave. Second, we discuss the emergence of multimers, consisting in
subsets of emitters separated by two lattice spacings in which the
electromagnetic field is approximately vanishing.
Related papers
- Decoherence of spin superposition state caused by a quantum electromagnetic field [0.0]
In this study, we investigate the decoherence of a spatially superposed electrically neutral spin-$frac12$ particle in the presence of a quantum electromagnetic field in Minkowski spacetime.
We demonstrate that decoherence due to the spin-magnetic field coupling can be categorized into two distinct factors: local decoherence, originating from the two-point correlation functions along each branch of the superposed trajectories, and nonlocal decoherence, which arises from the correlation functions between the two superposed trajectories.
arXiv Detail & Related papers (2024-07-19T18:00:00Z) - Emergent Oscillating bound states in a semi-infinite linear waveguide with a point-like $Λ$-type quantum emitter driven by a classical field [3.5644474704057223]
An oscillating bound state is a phenomenon where excitations mediated by the continuum modes oscillate persistently.
We present the phenomenon of an oscillating bound state with an alternative waveguide QED system.
arXiv Detail & Related papers (2024-05-28T09:28:35Z) - Dynamics and Resonance Fluorescence from a Superconducting Artificial Atom Doubly Driven by Quantized and Classical Fields [11.961708412157757]
Experimental demonstration of resonance fluorescence in a two-level superconducting artificial atom under two driving fields coupled to a detuned cavity.
The device consists of a transmon qubit strongly coupled to a one-dimensional transmission line and a coplanar waveguide resonator.
arXiv Detail & Related papers (2024-03-17T08:48:30Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Unconventional Quantum Electrodynamics with Hofstadter-Ladder Waveguide [5.693517450178467]
We propose a novel quantum electrodynamics (QED) platform where quantum emitters interact with a Hofstadter-ladder waveguide.
By assuming emitter's frequency to be resonant with the lower band, we find that the spontaneous emission is chiral.
Due to quantum interference, we find that both the emitter-waveguide interaction and the amplitudes of bound states are periodically modulated by giant emitter's size.
arXiv Detail & Related papers (2022-03-21T07:07:26Z) - Photon-emitter dressed states in a closed waveguide [0.0]
We study a system made up of one or two two-level quantum emitters, coupled to a single transverse mode of a closed waveguide.
We unearth finite-size effects in the field-emitter interactions and identify a family of dressed states, that represent the forerunners of bound states in the continuum in the limit of an infinite waveguide.
arXiv Detail & Related papers (2021-03-19T17:47:27Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Strongly entangled system-reservoir dynamics with multiphoton pulses
beyond the two-excitation limit: Exciting the atom-photon bound state [62.997667081978825]
We study the non-Markovian feedback dynamics of a two-level system interacting with the electromagnetic field inside a semi-infinite waveguide.
We compare the trapped excitation for an initially excited quantum emitter and an emitter prepared via quantized pulses containing up to four photons.
arXiv Detail & Related papers (2020-11-07T12:56:16Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.