論文の概要: Explaining decision of model from its prediction
- arxiv url: http://arxiv.org/abs/2106.08366v1
- Date: Tue, 15 Jun 2021 18:36:54 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-17 17:26:31.766856
- Title: Explaining decision of model from its prediction
- Title(参考訳): 予測からモデルの決定を説明する
- Authors: Dipesh Tamboli
- Abstract要約: この文書は、CAM、Grad-CAM、およびMultiple Instance Learningを用いたローカライゼーションのような異なる視覚的説明手法を要約する。
また, CAM, GradCAM, Guided Backpropagationの比較を行った。
- 参考スコア(独自算出の注目度): 1.2691047660244335
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This document summarizes different visual explanations methods such as CAM,
Grad-CAM, Localization using Multiple Instance Learning - Saliency-based
methods, Saliency-driven Class-Impressions, Muting pixels in input image -
Adversarial methods and Activation visualization, Convolution filter
visualization - Feature-based methods. We have also shown the results produced
by different methods and a comparison between CAM, GradCAM, and Guided
Backpropagation.
- Abstract(参考訳): 本稿では,CAM,Grad-CAM,Localization using Multiple Instance Learning, Saliency-based Method, Saliency-driven Class-Impressions, Muting pixels in input imageAdversarial Method, Activation Visualization, Convolution filter Visualization, Feature-based Methodなどの視覚的説明手法を要約する。
また,異なる手法による結果とcam,gradcam,ガイド付きバックプロパゲーションの比較を行った。
関連論文リスト
- Interpretable Network Visualizations: A Human-in-the-Loop Approach for Post-hoc Explainability of CNN-based Image Classification [5.087579454836169]
State-of-the-art explainability Method は、特定のクラスが特定された場所を示すために、サリエンシマップを生成する。
本稿では,畳み込みニューラルネットワークの機能抽出プロセス全体を説明するポストホック手法を提案する。
また,複数の画像にラベルを集約することで,グローバルな説明を生成する手法を提案する。
論文 参考訳(メタデータ) (2024-05-06T09:21:35Z) - Revisiting Demonstration Selection Strategies in In-Context Learning [66.11652803887284]
大規模言語モデル(LLM)は、インコンテキスト学習(ICL)を用いて広範囲のタスクを実行するという印象的な能力を示している。
本研究ではまず,データとモデルの両方の側面から,この分散に寄与する要因を再検討し,実演の選択がデータとモデルに依存していることを確かめる。
本研究では,データとモデルに依存した実演選択手法である textbfTopK + ConE を提案する。
論文 参考訳(メタデータ) (2024-01-22T16:25:27Z) - Convolutional autoencoder-based multimodal one-class classification [80.52334952912808]
1クラス分類は、単一のクラスからのデータを用いた学習のアプローチを指す。
マルチモーダルデータに適した深層学習一クラス分類法を提案する。
論文 参考訳(メタデータ) (2023-09-25T12:31:18Z) - COSE: A Consistency-Sensitivity Metric for Saliency on Image
Classification [21.3855970055692]
本稿では,画像分類タスクにおいて,視覚の先行値を用いてサリエンシ手法の性能を評価する指標について述べる。
しかし,ほとんどの手法では,畳み込みモデルよりもトランスフォーマーモデルの方がよく説明できる。
論文 参考訳(メタデータ) (2023-09-20T01:06:44Z) - Feature Activation Map: Visual Explanation of Deep Learning Models for
Image Classification [17.373054348176932]
本研究では,機能活性化マップ (FAM) と呼ばれるポストホック解釈ツールを提案する。
FAMは、FC層を分類器として使用せずにディープラーニングモデルを解釈できる。
提案したFAMアルゴリズムの有効性を実証するために,10種類の深層学習モデルを用いて,少数ショット画像分類,コントラスト学習画像分類,画像検索タスクを行った。
論文 参考訳(メタデータ) (2023-07-11T05:33:46Z) - Text Descriptions are Compressive and Invariant Representations for
Visual Learning [63.3464863723631]
本研究では,クラスごとの複数の視覚的特徴に対する人間の理解に則って,頑健な数ショット学習環境では魅力的な性能が得られることを示す。
特に,SLR-AVD (Sparse Logistic Regression using Augmented Visual Descriptors) という新しい手法を導入する。
このメソッドはまず、まず大きな言語モデル(LLM)を介して各クラスの複数の視覚的記述を自動生成し、次にVLMを使用してこれらの記述を各画像の視覚的特徴埋め込みに変換し、最後に、これらの特徴の関連するサブセットを選択するためにスパースロジスティック回帰を使用する。
論文 参考訳(メタデータ) (2023-07-10T03:06:45Z) - Open Set Classification of GAN-based Image Manipulations via a ViT-based
Hybrid Architecture [36.85653682256554]
オープンセットシナリオにおける合成顔生成と操作の分類に焦点を当てる。
提案手法は,視覚変換器(ViT)とハイブリッド手法を組み合わせて,同時分類と局所化を行う。
論文 参考訳(メタデータ) (2023-04-11T13:27:55Z) - Evaluation of Self-taught Learning-based Representations for Facial
Emotion Recognition [62.30451764345482]
この研究は、顔の感情認識のための自己学習の概念を通じて得られた教師なし表現を生成するための様々な戦略を記述する。
このアイデアは、オートエンコーダの初期化、アーキテクチャ、トレーニングデータを変化させることで、多様性を促進する補完的な表現を作ることである。
Jaffe と Cohn-Kanade のデータセットに対する残余のサブジェクトアウトプロトコルによる実験結果から,提案した多種多様な表現に基づく FER 手法が最先端のアプローチと好適に比較できることが示唆された。
論文 参考訳(メタデータ) (2022-04-26T22:48:15Z) - Distilling Localization for Self-Supervised Representation Learning [82.79808902674282]
コントラスト学習は教師なし表現学習に革命をもたらした。
現在のコントラストモデルでは、前景オブジェクトのローカライズには効果がない。
本稿では,背景変化を学習するためのデータ駆動型手法を提案する。
論文 参考訳(メタデータ) (2020-04-14T16:29:42Z) - There and Back Again: Revisiting Backpropagation Saliency Methods [87.40330595283969]
正当性法は,各入力サンプルの重要度マップを作成することによって,モデルの予測を説明する。
このような手法の一般的なクラスは、信号のバックプロパゲートと結果の勾配の分析に基づいている。
本稿では,そのような手法を統一可能な単一のフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-06T17:58:08Z) - Extending Class Activation Mapping Using Gaussian Receptive Field [9.307905311362372]
そこで本研究では,クラス活性化マッピング(CAM)に基づく可視化手法の改良したアップサンプリング手法を提案する。
また、既存のCAM研究の数学的導出における不自然な用語を同定し、修正する。
実験結果から,Extended-CAMは既存の手法よりも高精度な可視化を実現することがわかった。
論文 参考訳(メタデータ) (2020-01-15T07:04:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。