論文の概要: SEEN: Sharpening Explanations for Graph Neural Networks using
Explanations from Neighborhoods
- arxiv url: http://arxiv.org/abs/2106.08532v1
- Date: Wed, 16 Jun 2021 03:04:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-17 17:18:25.676041
- Title: SEEN: Sharpening Explanations for Graph Neural Networks using
Explanations from Neighborhoods
- Title(参考訳): SEEN: 周辺地域の説明を用いたグラフニューラルネットワークの高速化
- Authors: Hyeoncheol Cho, Youngrock Oh, Eunjoo Jeon
- Abstract要約: 本稿では,補助的説明の集約によるノード分類タスクの説明品質の向上手法を提案する。
SEENを適用するにはグラフを変更する必要はなく、さまざまな説明可能性のテクニックで使用することができる。
与えられたグラフからモチーフ参加ノードをマッチングする実験では、説明精度が最大12.71%向上した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Explaining the foundations for predictions obtained from graph neural
networks (GNNs) is critical for credible use of GNN models for real-world
problems. Owing to the rapid growth of GNN applications, recent progress in
explaining predictions from GNNs, such as sensitivity analysis, perturbation
methods, and attribution methods, showed great opportunities and possibilities
for explaining GNN predictions. In this study, we propose a method to improve
the explanation quality of node classification tasks that can be applied in a
post hoc manner through aggregation of auxiliary explanations from important
neighboring nodes, named SEEN. Applying SEEN does not require modification of a
graph and can be used with diverse explainability techniques due to its
independent mechanism. Experiments on matching motif-participating nodes from a
given graph show great improvement in explanation accuracy of up to 12.71% and
demonstrate the correlation between the auxiliary explanations and the enhanced
explanation accuracy through leveraging their contributions. SEEN provides a
simple but effective method to enhance the explanation quality of GNN model
outputs, and this method is applicable in combination with most explainability
techniques.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)から得られる予測の基礎を説明することは、実世界の問題にGNNモデルを使用する上で極めて重要である。
GNNアプリケーションの急速な成長に伴い、感度分析、摂動法、帰属法などのGNNからの予測を説明する最近の進歩は、GNNの予測を説明する大きな機会と可能性を示した。
本研究では,SEENと呼ばれる重要な隣接ノードからの補助的説明を集約することで,ポストホックな方法で適用可能なノード分類タスクの説明品質を向上させる手法を提案する。
seeを適用するにはグラフの変更は不要であり、独立したメカニズムのため、さまざまな説明可能性技術で使用できる。
与えられたグラフからモチーフ参加ノードをマッチングする実験では、説明精度が最大12.71%向上し、補助説明と説明精度の向上との相関性が示される。
SEENは、GNNモデル出力の説明品質を高めるためのシンプルだが効果的な方法を提供し、ほとんどの説明可能性技術と組み合わせて適用することができる。
関連論文リスト
- ACGAN-GNNExplainer: Auxiliary Conditional Generative Explainer for Graph
Neural Networks [7.077341403454516]
グラフニューラルネットワーク(GNN)は、様々な現実世界のアプリケーションで有効であることが証明されているが、その基盤となるメカニズムは謎のままである。
この課題に対処し、信頼性の高い意思決定を可能にするため、近年多くのGNN説明者が提案されている。
本稿では、GNN説明分野にAuxiliary Generative Adrative Network (ACGAN)を導入し、emphACGANGNNExplainerと呼ばれる新しいGNN説明器を提案する。
論文 参考訳(メタデータ) (2023-09-29T01:20:28Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Structural Explanations for Graph Neural Networks using HSIC [21.929646888419914]
グラフニューラルネットワーク(GNN)は、グラフィカルなタスクをエンドツーエンドで処理するニューラルネットワークの一種である。
GNNの複雑なダイナミクスは、グラフの特徴のどの部分が予測に強く寄与しているかを理解するのを困難にしている。
本研究では,グラフ内の重要な構造を検出するために,フレキシブルモデルに依存しない説明法を提案する。
論文 参考訳(メタデータ) (2023-02-04T09:46:47Z) - GANExplainer: GAN-based Graph Neural Networks Explainer [5.641321839562139]
グラフニューラルネットワーク(GNN)が、多くのアプリケーションにおいて、特定の予測を行う理由を説明することは重要である。
本稿では,GANアーキテクチャに基づくGANExplainerを提案する。
GANExplainerは、その代替案と比較して、説明精度を最大35%改善する。
論文 参考訳(メタデータ) (2022-12-30T23:11:24Z) - Task-Agnostic Graph Explanations [50.17442349253348]
グラフニューラルネットワーク(GNN)は、グラフ構造化データをエンコードする強力なツールとして登場した。
既存の学習ベースのGNN説明手法は、訓練においてタスク固有である。
本稿では、下流タスクの知識のない自己監督下で訓練されたタスク非依存のGNN Explainer(TAGE)を提案する。
論文 参考訳(メタデータ) (2022-02-16T21:11:47Z) - Edge-Level Explanations for Graph Neural Networks by Extending
Explainability Methods for Convolutional Neural Networks [33.20913249848369]
グラフニューラルネットワーク(GNN)は、グラフデータを入力として扱うディープラーニングモデルであり、トラフィック予測や分子特性予測といった様々なタスクに適用される。
本稿では,CNNに対する説明可能性の手法として,LIME(Local Interpretable Model-Agnostic Explanations)やGradient-Based Saliency Maps,Gradient-Weighted Class Activation Mapping(Grad-CAM)をGNNに拡張する。
実験結果から,LIMEに基づくアプローチは実環境における複数のタスクに対する最も効率的な説明可能性手法であり,その状態においても優れていたことが示唆された。
論文 参考訳(メタデータ) (2021-11-01T06:27:29Z) - Jointly Attacking Graph Neural Network and its Explanations [50.231829335996814]
グラフニューラルネットワーク(GNN)は多くのグラフ関連タスクのパフォーマンスを向上した。
近年の研究では、GNNは敵の攻撃に対して非常に脆弱であることが示されており、敵はグラフを変更することでGNNの予測を誤認することができる。
本稿では、GNNモデルとその説明の両方を同時に利用して攻撃できる新しい攻撃フレームワーク(GEAttack)を提案する。
論文 参考訳(メタデータ) (2021-08-07T07:44:33Z) - Parameterized Explainer for Graph Neural Network [49.79917262156429]
グラフニューラルネットワーク(GNN)のためのパラメータ化説明器PGExplainerを提案する。
既存の研究と比較すると、PGExplainerはより優れた一般化能力を持ち、インダクティブな設定で容易に利用することができる。
合成データセットと実生活データセットの両方の実験では、グラフ分類の説明に関するAUCの相対的な改善が24.7%まで高い競争性能を示した。
論文 参考訳(メタデータ) (2020-11-09T17:15:03Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
グラフニューラルネットワーク(GNN)は、隣の情報を集約して組み合わせることでノードの特徴を学習する。
GNNはブラックボックスとして扱われ、人間の知的な説明が欠けている。
我々はモデルレベルでGNNを解釈する新しい手法 XGNN を提案する。
論文 参考訳(メタデータ) (2020-06-03T23:52:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。